Mathematics Department

Summer Semester 2020/2021

Instructor: Dr. Ala Talahmeh

Course Code: Math 2311

Title: Calculus III

1
Sunday, July 04, 2021
9:10 PM

VECTORS AND THE GEOMETRY OF SpACE
12.1 Three-Dimensional Coordinate Systems

FIGURE 12.1 The Cartesian coordinate system is right-handed.

First octant
$x \geqslant 0, \quad y \geqslant 0$, z $\geqslant 0$.

$$
\begin{array}{ll}
x y \text {-plane } & (z=0) \\
x z \text {-plane } & \left(\begin{array}{l}
y=0
\end{array}\right) \\
y z \text {-plane } & (x=0)
\end{array}
$$

FIGURE 12.2 The planes $x=0, y=0$, and $z=0$ divide
space into eight octants.

EXAMPLE 1 We interpret these equations and inequalities geometrically.
(Describe in space).
(1) $z \geqslant 0$: The half space consisting of all points above $x y$-plane.
(2) $x=-3$: plane perpendicular to

$$
x \text {-a } x_{i}>\text { at } x=-3
$$

(3) py-plane parallel to $y z$-plane
(3) $z=0, x \leq 0, y \geqslant 0$: second quadrant in $x y$-plane.
(4) $-1 \leq y \leq 1$: the slab between the planes $y=-1$ and
(5) $y=-2, z=2$: the line in which the planes $\bar{y}=-2$ and $z=2$ intersect.
(6) $x^{2}+y^{2}=4, z=3$: Circle in the plane $z=3$

FIGURE 12.4 The circle $x^{2}+y^{2}=4$ in the plane $z=3$ (Example 2).

Distance and Spheres in Space
The formula for the distance between two points in the $x y$-plane extends to points in space.

The Distance Between $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\begin{gathered}
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \\
\text { Ex. } P_{1}\left(\begin{array}{c}
x_{1} y_{1} z_{1} \\
2 \\
, \\
\text { Ex }
\end{array}, 4\right), p_{2}\binom{x_{2} y_{2} z_{2}}{-1,5,0}, \text { find }\left|p_{1} p_{2}\right| \\
\text { Sol. }\left|p_{1} p_{2}\right| \\
=\sqrt{(-1-2)^{2}+(5-3)^{2}+(0-4)^{2}} \\
=\sqrt{9+4+16}=\sqrt{29}
\end{gathered}
$$

The Standard Equation for the Sphere of Radius a and Center $\left(x_{0}, y_{0}, z_{0}\right)$

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=a^{2}
$$

$$
a=\underbrace{\left.\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=a^{2}\right)}_{\left(x-x_{0}\right)^{2}+\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+(z-20)^{2}}
$$

4

EXAMPLE 4 Find the center and radius of the sphere

$$
x^{2}+y^{2}+z^{2}+3 x-4 z+1=0 .
$$

Sol.

$$
\begin{aligned}
& \underbrace{x^{2}+3 x+\left(\frac{3}{2}\right)^{2}}+y^{2}+z^{2}-y z+\left(-\frac{4}{2}\right)^{2}=-1+\left(\frac{3}{2}\right)^{2}+\left(-\frac{4}{2}\right)^{2} \\
& \left(x+\frac{3}{2}\right)^{2}+(y-0)^{2}+(z-2)^{2}=-1+\frac{9}{4}+4 \\
& \left(x+\frac{3}{2}\right)^{2}+(y-0)^{2}+(z-2)^{2}=\frac{21}{4} \\
& \text { radius }=a=\sqrt{\frac{21}{4}}=\frac{\sqrt{21}}{2} \\
& \text { Center }\left(-\frac{3}{2}, 0,2\right) .
\end{aligned}
$$

EXAMPLE 5 Here are some geometric interpretations of inequalities and equations involving spheres.
(a) $x^{2}+y^{2}+z^{2}<4$ The interior points of the sphere $x^{2}+y^{2}+z^{2}=4$
(b) $x^{2}+y^{2}+z^{2} \leq 4$. The sphere $x^{2}+y^{2}+z^{2}=4$ together with its interior. (the solid ball bounded by the sphere $\left.x^{2}+y^{2}+z^{2}=4\right)$.
(c) $x^{2}+y^{2}+z^{2}>4$ the exterior of the
(d) $x^{2}+y^{2}+z^{2}=4, z \leq 0$ sphere $x^{2}+y^{2}+z^{2}=4$.

The lower hemisphere Cut from the sphere
 $x^{2}+y^{2}+z^{2}=4$ by the $x y$-plane x (th eplane $z=0$).

In Exercises 1-16, give a geometric description of the set of points in space whose coordinates satisfy the given pairs of equations.
13. $x^{2}+y^{2}=4, z=y$
cylinder
the ellipse formed by
the intersection of the

cylinder $x^{2}+y^{2}=4$ and the plane $z=y$.

In Exercises 25-34, describe the given set with a single equation or with a pair of equations.
32. The set of points in space equidistant from the origin and the point $(0,2,0)$

$$
\begin{gathered}
|\overline{P O}|=|\overline{P Q}| \\
\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{x^{2}+(y-2)^{2}+z^{2}}{ }^{4} \times(0,0,0) \\
\Rightarrow y^{2}=(y-2)^{2} \\
y^{2}=y^{2}-4 y+4 \Rightarrow y
\end{gathered}
$$

34. The set of points in space that lie 2 units from the point $(0,0,1)$ and, at the same time, 2 units from the point $(0,0,-1)$

$$
\begin{array}{ll}
P(0,0,1), Q(0,0,-1) & R(x, y, z) \\
|\overline{P R}|=2 & |\overline{Q R}|=2 \\
\sqrt{x^{2}+y^{2}+(z-1)^{2}}=2, \sqrt{x^{2}+y^{2}+(z+1)^{2}}=2
\end{array}
$$

6

$$
\begin{align*}
& x^{2}+y^{2}+(z-1)^{2}=4 \ldots \text { (1) } \\
& x^{2}+y^{2}+(z+1)^{2}=4 \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \text { (1) a (2) } \Rightarrow \\
& x^{2}+y^{2}+z^{2}-2 z+x=x^{2}+y^{2}+z^{2}+2 z+x \\
& \quad \Rightarrow 4 z=0 \Rightarrow z=0 \text {.- } 3 \text {. }
\end{aligned}
$$

(3) into (1) $\Rightarrow x^{2}+y^{2}=3$

$$
\therefore \quad x^{2}+y^{2}=3, z=0
$$

(The circle $x^{2}+y^{2}=3$ in the $x y$-plane).
(8) $y^{2}+z^{2}=1, x=0$.

The circle $y^{2}+z^{2}=1$ in the $y z$-plane.
(12) $x^{2}+(y-1)^{2}+z^{2}=4, y=0$.

Sol. $x^{2}+(-1)^{2}+z^{2}=4 \Rightarrow x^{2}+z^{2}=3$
the circle $x^{2}+z^{2}=3$ in the $x z$-plane.
(14) $x^{2}+y^{2}+z^{2}=4, y=x$.

The circle formed by the intersection of the sphere $x^{2}+y^{2}+z^{2}=4$ and the plane $y=x$.

- length of $\overrightarrow{A B}$ or the magnitude of $\overrightarrow{A B}$ is denoted by $|\overrightarrow{A B}|$.
- Two vectors are equal if they have the same length and direction.
Two dimension (standard)

Three dimension $\vec{V}=\left\langle V_{1}, V_{2}, V_{3}\right\rangle$.

$$
\begin{aligned}
& \overrightarrow{P_{1} P_{2}}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle \\
& \text { (direction) } \\
& \text { magnitude }=\left|\vec{p}_{1} p_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
\end{aligned}
$$

8
Ex. $P(-3,4,1), \quad Q(-5,2,2)$.
Find the components of direction of $\overrightarrow{P Q}$.
Sol.

$$
\begin{aligned}
& \overrightarrow{P Q}=\langle-5+3,2-4,2-1\rangle \\
&=\langle-2,-2,1\rangle \\
& \begin{aligned}
\text { length } & =|\overrightarrow{P Q}|
\end{aligned}=\sqrt{(-2)^{2}+(-2)^{2}+(1)^{2}} \\
&=\sqrt{9}=3
\end{aligned}
$$

Vector Algebra Operations
DEFINITIONS Let $u=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $v=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ be vectors with $\left(k_{k} /\right.$ scalar.

Addition:

$$
\mathbf{u}+\mathbf{v}=\left\langle u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right\rangle
$$

$$
\text { Scalar multiplication: } \quad k \mathbf{u}=\left\langle k u_{1}, k u_{2}, k u_{3}\right\rangle
$$

Ex. $\vec{u}=\langle-1,3,1\rangle, \vec{v}=\langle 4,7,0\rangle$
(a)

$$
\begin{aligned}
\vec{u}+3 \vec{v}= & \langle-1,3,1\rangle+3\langle 4,7,0\rangle \\
= & \langle-1,3,1\rangle+\langle 12,21,0\rangle \\
= & \langle-1+12,3+21,1+0\rangle \\
= & \langle 11,24,1\rangle
\end{aligned}
$$

(b)

$$
\begin{aligned}
\left|\frac{1}{2} \vec{V}\right| & =\left|\frac{1}{2}\langle 4,7,0\rangle\right| \\
& =\left|\left\langle 2, \frac{7}{2}, 0\right\rangle\right| \\
& =\sqrt{2^{2}+\left(\frac{7}{2}\right)^{2}+(0)^{2}}=\frac{\sqrt{65}}{2}
\end{aligned}
$$

Properties of Vector Operations
Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors and a, b be scalars.

1. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
2. $\mathbf{u}+\mathbf{0}=\mathbf{u}$
3. $0 u=0$
4. $a(b \mathbf{u})=(a b) \mathbf{u}$
5. $(a+b) \mathbf{u}=a \mathbf{u}+b \mathbf{u}$
6. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
7. $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
8. $1 \mathbf{u}=\mathbf{u}$
9. $a(\mathbf{u}+\mathbf{v})=a \mathbf{u}+a \mathbf{v}$

Unit vectors
A vector of length 1 is called unit vector.
Standard unit vectors

$i=\langle 1,0,0\rangle \quad j=\langle 0,1,0\rangle, \quad k=\langle 0,0,1\rangle$

$$
\begin{aligned}
\vec{V}= & \langle x, y, z\rangle \\
= & \langle x, 0,0\rangle+\langle 0, y, 0\rangle+\langle 0,0, z\rangle \\
= & x\langle 1,0,0\rangle+y\langle 0,1,0\rangle+z\langle 0,0,1\rangle \\
= & x i+y j+z k
\end{aligned}
$$

ex. $\vec{V}=\langle 2,3,5\rangle=2 i+3 j+5 k$.

Rum. If $\vec{u} \neq \overrightarrow{0}$, then $\frac{\vec{u}}{|\vec{u}|}$ is a unit Vector in the direction of \vec{u}.
$-\frac{\vec{u}}{|\vec{u}|}$ is aunit vector in the opposite direction of \vec{u}.
Ex. Find a unit vector \vec{V} in the direction of the vector $\vec{p}_{1} p_{2}$ where $p_{1}(1, v, 1), p_{2}(3,2,0)$.
Sol.

$$
\begin{aligned}
\vec{V}=\frac{\vec{p}_{1}}{\mid \vec{p}_{1}} & =\frac{(3-1) i+(2-0) j+(0-1) k}{\sqrt{4+4+1}} \\
& =\frac{2}{3} i+\frac{2}{3} j-\frac{1}{3} k .
\end{aligned}
$$

Q33) Find a vector \vec{w} of length 7 in the direction of $\vec{V}=12 i-5 k$.
Solution.

$$
\begin{aligned}
\vec{w}=7 \frac{\vec{V}}{|\vec{V}|} & =\frac{7}{\sqrt{144+25}}(12 i-5 k) \\
& =\frac{7}{13}(12 i-5 k) \\
& =\frac{84}{13} i-\frac{35}{13} k
\end{aligned}
$$

EXAMPLE 5 If $=3 \mathbf{i}-4 \mathbf{j}$ is a velocity vector. $\operatorname{express}$ (vas a product of its speed times a unit vector in the direction of motion.

Sol:

$$
\text { Sol.: } \begin{aligned}
\vec{V} & =\underbrace{|\vec{V}|}_{\text {speed }}\left(\frac{\vec{V}}{|\vec{V}|}\right),|\vec{V}|=\sqrt{3^{2}+(-4)^{2}}=5 \\
= & 5 \quad\left(\frac{3 i}{5}-\frac{4}{5} j\right)
\end{aligned}
$$

Summary. If $\vec{V} \neq \overrightarrow{0}$, then
(1) $\frac{\vec{v}}{|\vec{v}|}$ is aunit vector in the direction of \vec{V}.
(2) The equation $\vec{v}=|\vec{v}| \frac{\vec{v}}{|\vec{v}|}$ expresses as its length times its direction.
Midpoint of a line segment
The Midpoint M of a line segment joining $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ i) the point $M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$

$$
\begin{aligned}
\overrightarrow{O M} & =\overrightarrow{O P_{1}}+\frac{1}{2} \overrightarrow{P P}_{1} \\
& =\overrightarrow{O P}+\frac{1}{2}\left(\overrightarrow{O P_{2}}-\overrightarrow{O P_{1}}\right) \\
& =\frac{1}{2}\left(\overrightarrow{O P}+\overrightarrow{O P_{2}}\right) \\
& =\frac{1}{2}\left(x_{1} i+y_{1} j+z_{1} k+x_{2} i+y_{2} j+z_{2} k\right)
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{O M}=\frac{x_{1}+x_{2}}{2} i+\frac{y_{1}+y_{2}}{2} j+\frac{z_{1}+z_{2}}{2} k \\
& \therefore M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right) .
\end{aligned}
$$

Ex. The midpoint of the segment joining $P_{1}(3,-2,0), P_{2}(7,4,0)$ is

$$
M\left(\frac{3+7}{2}, \frac{-2+4}{2}, \frac{0+0}{2}\right)=(5,1,0)
$$

DEFINITION The dot product $\mathbf{u} \cdot \mathbf{v}\left(\right.$ " $\mathbf{u} \operatorname{dot} \mathbf{v}$ ") of vectors $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}
$$

$$
\text { or } \quad \vec{u} \cdot \vec{v}=|\vec{u}||\vec{v}| \cos \theta
$$

THEOREM 1—Angle Between Two Vectors The angle θ between two nonzero vectors $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is given by

$$
\theta=\cos ^{-1}\left(\frac{u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}}{|\mathbf{u}||\mathbf{v}|}\right)
$$

$$
, 0 \leq \theta<\pi
$$

Rump. © Two vectors are orthogonal (perplemptrate) if $\quad \vec{u} \cdot \vec{v}=0$
(2 $\overrightarrow{0}$ is orthogonal to any vector \vec{u}.
Since $\vec{o} \cdot \vec{u}=O \cdot u_{1}+O u_{2}+O u_{3}=0$
Ex. $\vec{u}=3 i-2 j+k$ and $\vec{v}=2 j+4 k$ are orthogonal since

$$
\begin{gathered}
\overrightarrow{\mathbf{u}} \cdot \vec{v}=(3)(0 \cdot)+(-2)(2)+(1)(4) \\
=-4+4=0 .
\end{gathered}
$$

Ex. If $\vec{u}=3 i-2 j+k$ and $\vec{v}=2 j+x k$ are orthogonal, find x.
Sol. $\vec{u} \cdot \vec{v}=0 \Rightarrow(3)(0)+(-2)(2)+(1)(x)=0$

$$
-4+x=0 \Rightarrow x=4
$$

Ex. Find the angle between the vectors $\vec{u}=i-2 j-k$ and $\vec{v}=6 i+3 j+2 k$.
Solution

$$
\begin{aligned}
\theta= & \cos ^{-1}\left(\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}\right) \\
& =\cos ^{-1}\left(\frac{(1)(6)+(-2)(3)+(-1)(2)}{\sqrt{1+4+1} \sqrt{36+9+4}}\right) \\
& =\cos ^{-1}\left(\frac{-2}{7 \sqrt{6}}\right) \approx \ldots
\end{aligned}
$$

Properties of the Dot Product
If \mathbf{u}, \mathbf{v}, and \mathbf{w} are any vectors and c is a scalar, then

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. $(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})=c(\mathbf{u} \cdot \mathbf{v})$
3. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
4. $\mathbf{u} \cdot \mathbf{u}=|\mathbf{u}|^{2}$
5. $\mathbf{0} \cdot \mathbf{u}=0$.
proof. (4)

$$
\begin{aligned}
\vec{u} \cdot \vec{u} & =u_{1} u_{1}+u_{2} u_{2}+u_{3} u_{3} \\
& =\left(\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}\right)^{2} \\
& =|\vec{u}|^{2}
\end{aligned}
$$

Ex. If $|\vec{u}|=4,|\vec{v}|=5, \theta=\pi / 3$ is the angle between \vec{u} and \vec{v}.
Find $|\vec{u}+\vec{v}|$.
Sol. $\vec{u} \cdot \vec{v}=|\vec{u}||\vec{v}| \cos \frac{\pi}{3}=(4)(5)\left(\frac{1}{2}\right)=10$.
using (4)

$$
\begin{aligned}
|\vec{u}+\vec{v}|^{2} & =(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v}) \\
& =\vec{u} \cdot \vec{u}+\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{u}+\vec{v} \cdot \vec{v}
\end{aligned}
$$

15

$$
\begin{aligned}
&=|\vec{u}|^{2}+2(\vec{u} \cdot \vec{v})+|\vec{v}|^{2} \\
&=(4)^{2}+2(10)+(5)^{2} \\
&|\vec{u}+\vec{v}|^{2}=16+20+25=61 \\
& \therefore|\vec{u}+\vec{v}|=\sqrt{61} .
\end{aligned}
$$

vector projection

$$
\begin{aligned}
\operatorname{Proj}_{\vec{v}}^{\vec{v}} & =(\text { length })(\text { direction }) \\
& =(|\vec{u}| \cos \theta) \frac{\vec{v}}{|\vec{v}|} \\
& =\left(\overrightarrow{y \mid}\left|\frac{\vec{u} \cdot \vec{v}}{|\vec{k}||\vec{v}|}\right| \frac{\vec{v}}{|\vec{v}|}\right) \\
\operatorname{proj}_{\vec{v}}^{\vec{u}} & =\left(\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^{2}}\right) \vec{v}
\end{aligned}
$$

$|\vec{v}| \cos \theta$
vector projection of \vec{V} onto \vec{v}.
scalar component of \vec{u} onto \vec{v} is

$$
\operatorname{Comp} \overrightarrow{\vec{v}}=\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|}
$$

16

EXAMPLE 5 Find the vector projection of $\mathbf{u}=6 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$ onto $\mathbf{v}=\mathbf{i}-2 \mathbf{j}-2 \mathbf{k}$ and the scalar component of \mathbf{u} in the direction of \mathbf{v}.

Sol.

$$
\text { 이. } \begin{aligned}
\operatorname{Proj}_{\vec{v}} \overrightarrow{\vec{v}} & =\left(\frac{\vec{u} \cdot \vec{V}}{|\vec{V}|^{2}}\right) \vec{v} \\
& =\left(\frac{6-6-4}{(\sqrt{1+4+4})^{2}}\right)(i-2 j-2 k) \\
& =\frac{-4}{9}(i-2 j-2 k) \\
& =-\frac{4}{9} i+\frac{8}{9} j+\frac{8}{9} k \\
\operatorname{comp} \overrightarrow{\vec{u}} & =\frac{\vec{u} \cdot \vec{V}}{|\vec{v}|}=\frac{6-6-4}{\sqrt{9}}=-\frac{4}{3}
\end{aligned}
$$

12.4

The Cross Product

$$
\vec{u} \times \vec{v}=(|\vec{u}||\vec{v}| \sin \theta) \vec{n}
$$

\vec{n} : is the unit vector normal to the plane containing \vec{U} and \vec{V}

Rum. Nonzero vectors \vec{u} and \vec{v} are parallel iff $\vec{u} \times \vec{v}=\overrightarrow{0}$

Properties of the Cross Product If \mathbf{u}, \mathbf{v}, and \mathbf{w} are any vectors and r, s are scalars, then

1. $(r \mathbf{u}) \times(s \mathbf{v})=(r s)(\mathbf{u} \times \mathbf{v})$
2. $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$
3. $\mathbf{v} \times \mathbf{u}=-(\mathbf{u} \times \mathbf{v})$
4. $(\mathbf{v}+\mathbf{w}) \times \mathbf{u}=\mathbf{v} \times \mathbf{u}+\mathbf{w} \times \mathbf{u}$
5. $0 \times \mathbf{u}=0$
6. $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$

$$
\begin{aligned}
& i \times j=k \\
& j \times k=i \\
& k \times i=j \\
& i \times i=\overrightarrow{0}=j \times j=k \times k
\end{aligned}
$$

Determinant Formula for $\mathbf{u} \times \mathbf{v}$

$$
\begin{aligned}
& \vec{u}=u_{1} i+u_{2} j+u_{3} k, \vec{v}=v_{1} i+v_{2} j+v_{3} k \\
& \vec{u} \times \vec{v}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle x\left\langle v_{1}, v_{2}, v_{3}\right\rangle \\
& =(\underbrace{u^{\prime}}_{\overrightarrow{u_{1}} i}+u_{2} j+u_{3} k) \times(\underbrace{v_{1} i+v_{2} j+v_{3} k}) \\
& =\left(u, v_{1}\right) \stackrel{\rightarrow i}{\overrightarrow{0}}+\left(u, v_{2}\right)(i \times j)^{k}+\left(u, v_{3}\right)-(i \times k) . \\
& +\left(u_{2} v_{1}\right)\left({ }_{j \times i}^{-k}+\left(u_{2} v_{2}\right) \overrightarrow{j \times j}+\left(u_{2} v_{3}\right)\left(\frac{i}{(j k k)}\right.\right. \\
& +\left(u_{3} v_{1}\right) \frac{k_{j}}{j}+\left(u_{3} v_{2}\right) \frac{k_{j} x_{j}}{-i}+\left(u_{3} v_{3}\right){ }^{k} k_{k} \\
& =\left(u_{2} v_{3}-u_{3} v_{2}\right) i+\left(u_{3} v_{1}-u_{1} v_{3}\right) j \\
& +\left(u_{1} v_{2}-u_{2} v_{1}\right) k \\
& =\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right| i-\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right| j+\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| k \\
& \vec{u} \times \vec{v}=\left|\begin{array}{lll}
i & j & k \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|
\end{aligned}
$$

\qquad $=\left|\begin{array}{ll}1 & 1 \\ 3 & 1\end{array}\right| i-\left|\begin{array}{cc}2 & 1 \\ -4 & 1\end{array}\right| j+\left|\begin{array}{cc}2 & 1 \\ -4 & 3\end{array}\right| k$ $=(1-3) i-(2--4) j+(6--4) k$ $=-2 i-6 j+10 k$.
b) Find aunit vector normal to the plane containing \vec{u} and \vec{v}.
Sol. $\quad \frac{\vec{u} \times \vec{v}}{|\vec{u} \times \vec{v}|}=\frac{1}{\sqrt{4+36+100}}(-2 i-6 j+10 k)$

$$
=\frac{1}{\sqrt{140}}(-2 i-6 j+10 k)
$$

$|\mathbf{u} \times \mathbf{v}|$ Is the Area of a Parallelogram
Because \mathbf{n} is a unit vector, the magnitude of $\mathbf{u} \times \mathbf{v}$ is

$$
|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}||\sin \theta||\mathbf{n}|=|\mathbf{u}||\mathbf{v}| \sin \theta
$$

EXAMPLE 2@ Find a vector perpendicular to the plane of $P(1,-1,0), Q(2,1,-1)$, and $R(-1,1,2)$ (Figure 12.31).
(b) Find the area of the triande $\triangle P Q R$.
(a) $\overrightarrow{P R} \times \overrightarrow{P Q}$

$$
\begin{aligned}
& \overrightarrow{P R}=(-1-1) i+(1+1) j+(2-0) k \\
& =-2 i+2 j+2 k \\
& \overline{P Q}=(2-1) i+(1--1) j-k \\
& =i+2 j-k \\
& \overrightarrow{P R} \\
& \overrightarrow{P R} \times \overrightarrow{P Q}=\left|\begin{array}{ccc}
i & j & k \\
-2 & 2 & 2 \\
1 & 2 & -1
\end{array}\right|= \\
& =\left|\begin{array}{ll}
2 & 2 \\
2 & -1
\end{array}\right| i-\left|\begin{array}{cc}
-2 & 2 \\
1 & -1
\end{array}\right| j+\left|\begin{array}{cc}
-2 & 2 \\
1 & 2
\end{array}\right| k \\
& =-6 i-0 j-6 k=-6 i-6 k \text {. }
\end{aligned}
$$

(b) Area of the triangle $=\frac{1}{2}|\overrightarrow{P R} \times \overrightarrow{P Q}|$

$$
\begin{aligned}
& =\frac{1}{2} \sqrt{(-6)^{2}+(-6)^{2}} \\
& =\frac{1}{2} \sqrt{72} \\
& =\frac{1}{2} \cdot 6 \sqrt{2}=3 \sqrt{2} .
\end{aligned}
$$

The product $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ is called the triple scalar product of \mathbf{u}, \mathbf{v}, and \mathbf{w} (in that order).
As you can see from the formula

$$
\mid(\underbrace{\mathbf{u} \times \mathbf{v})} \cdot \mathbf{w}|=\underbrace{|\mathbf{u} \times \mathbf{v}|}| \mathbf{w}| | \cos \theta|, \quad| x \cdot y|=| x)(y| | \cos \theta \mid
$$

$$
\begin{aligned}
\text { Volume } & =\text { area of base height } \\
& =|\mathbf{u} \times \mathbf{v}||\mathbf{w}||\cos \theta| \\
& =|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|
\end{aligned}
$$

FIGURE 12.34 The number $|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|$ is the volume of a parallelepiped.

Calculating the Triple Scalar Product as a Determinant

$$
\begin{array}{r}
(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=\left|\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|=u_{1}\left|\begin{array}{ll}
v_{2} & v_{3} \\
w_{2} & w_{3}
\end{array}\right|-u_{2}\left|\begin{array}{l}
v_{1} \\
w_{1} \\
w_{3}
\end{array}\right| \\
+u_{3}\left|\begin{array}{l}
w_{3} \\
v_{1} \\
w_{1} \\
w_{2}
\end{array}\right|
\end{array}
$$

EXAMPLE 6 Find the volume of the box (parallelepiped) determined by $\mathbf{u}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$, $\mathbf{v}=-2 \mathbf{i}+3 \mathbf{k}$, and $\mathbf{w}=7 \mathbf{j}-4 \mathbf{k}$.

$$
\begin{aligned}
(\vec{u} \times \vec{v}) \cdot \vec{w} & =\left|\begin{array}{ccc}
\oplus & \Theta & \oplus \\
1 & 2 & -1 \\
-2 & 0 & 3 \\
0 & 7 & -4
\end{array}\right| \\
& =1\left|\begin{array}{cc}
0 & 3 \\
7 & -4
\end{array}\right|-2\left|\begin{array}{cc}
-2 & 3 \\
0 & -4
\end{array}\right|-1\left|\begin{array}{cc}
-2 & 0 \\
0 & 7
\end{array}\right| \\
& =\left\lvert\,\left(\begin{array}{cc}
0 & -21)-2(8-0)-1(-14-0) \\
& =-21-16+14=-23 . \\
\therefore \text { Volume } & =\mid-231=23 .
\end{array} . . \begin{array}{l}
-14
\end{array}\right)\right.
\end{aligned}
$$

Lines and Line Segments in Space

$$
\begin{aligned}
& \overrightarrow{p_{0} p} / / \vec{V} \\
& \overrightarrow{P_{0} p}=\left(x-x_{0}\right) i+\left(y-y_{0}\right) j \\
& \quad+\left(z-z_{0}\right) k \\
& \vec{V}=v_{1} i+v_{2} j+v_{3} k
\end{aligned}
$$

$$
L=\left\{P(x, y, z): \overrightarrow{p_{0} p} / / \vec{V}\right\}
$$

Thus, $\overrightarrow{P_{0} P}=t \vec{v}, t$ scalar parameter

$$
\left.\begin{array}{l}
\left(x-x_{0}\right) i+\left(y-y_{1}\right) j+\left(z-z_{0}\right) k=t\left(v_{1} i+v_{2} j+v_{3} k\right) \\
\underbrace{\tilde{x} i+y j+z k}=\widetilde{x_{0} i}+y_{0} j+z_{0} k+\tilde{t}\left(v_{1} i+v_{2} j\right. \\
\left.+v_{3} k\right)
\end{array}\right] .
$$

is Called vector eq. for the line L through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ parallel to \vec{V}.
\vec{r} : position vector of $p(x, y, z)$ on L.

$$
r_{0}: \approx \quad \approx \quad \approx P_{0}\left(x_{0}, y_{0}, z_{0}\right)
$$

The stand al parametric eq of the line L through $P_{0}\left(x, y_{0}, z\right)$ parallel to $\vec{V}=v_{1} i+v_{2} j+v_{3} k$

$$
\text { are }\left\{\begin{array}{l}
x=x_{0}+t v_{1} \\
y=y_{0}+t v_{2},-\infty<t<\infty \\
z=z_{0}+t v_{3}
\end{array}\right.
$$

EXAMPLE 1 Find parametric equations for the line through ($-2,0,4$) parallel to $\mathbf{v}=2 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k}$ (Figure 12.36).

Sol.

$$
\begin{aligned}
& x=-2+2 t \\
& y=0+4 t, \quad-\infty<t<\infty \\
& z=4-2 t
\end{aligned}
$$

OR $\frac{x+2}{2}=\frac{y-0}{4}=\frac{z-4}{-2}$ are called symmetric eqs.
Vector eq. $\underbrace{(x, y, z)}_{r(t)}=\underbrace{(-2,0, y)}_{r_{0}(t)}+t \vec{v}$
EXAMPLE 2 Find parametric equations for the line through $P(-3,2,-3)$ and $Q(1,-1,4)$.

$$
\begin{aligned}
\vec{V}=\overrightarrow{P Q}= & (-3-1) i+(2+1) j \\
& +(-3-4) k \\
= & -4 i+3 j-7 k
\end{aligned}
$$

$$
\begin{aligned}
& P(-3,2,-3), \vec{V}=4 i-3 j+7 k \\
& \text { The parametric eqs are } \\
& x=-3+4 t, y=2-3 t, z=-3+7 t,-\infty<t<\infty
\end{aligned}
$$

EXAMPLE 3 Parametrize the line segment joining the points $P(-3,2,-3)$ and $Q(1,-1,4)$ (Figure 12.37).

$$
\begin{aligned}
& \vec{V}=\overrightarrow{P Q}=4 i-3 j+7 k \quad \vec{P} \quad \overrightarrow{t=0} \\
& P_{0} \text { is } P(-3,2,-3) \\
& x=-3+4 t, \quad y=2-3 t, z=-3+7 t, \quad 0 \leq t \leq 1 \\
& \overrightarrow{P\left(x_{0}, y \cdot, z_{0}\right), \quad Q\left(x_{1}, y_{1}, z_{1}\right)} \\
& x=x_{0}+\left(x_{1}-x_{0}\right) t, \quad y=y_{0}+\left(y_{1}-y_{0}\right) t, z=z_{0}+\left(z_{1}-z_{0}\right) t \\
& \quad 0 \leq t \leq 1
\end{aligned}
$$

Remark.
The vector form (Equation (2)) for a line in space is more revealing if we think of a line as the path of a particle starting at position $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and moving in the direction of vector \mathbf{v}. Rewriting Equation (2), we have

$$
r(t)=r_{0}+t \vec{v}
$$

In other words, the position of the particle at time t is its initial position plus its distance moved (speed \times time) in the direction $\mathbf{v} /|\mathbf{v}|$ of its straight-line motion.

The Distance from a Point to a Line in Space

Distance from a Point S to a Line Through P Parallel to v

$$
d=\frac{|\stackrel{\rightharpoonup}{P S} \times \mathbf{v}|}{|\mathbf{v}|}
$$

FIGURE 12.38 The distance from S to the line through P parallel to \mathbf{v} is $|\overrightarrow{P S}| \sin \theta$, where θ is the angle between $\stackrel{\rightharpoonup}{P S}$ and \mathbf{v}.

EXAMPLE 5 Find the distance from the point $S(1,1,5)$ to the line

$$
\begin{aligned}
& L: \quad x=1+(t) \quad \begin{array}{l}
y=3-t) \\
t=0
\end{array} \quad z=(2 t),-\infty<t<\infty \\
& S(1,1,5), \quad P(1,3,0), \vec{V}=i-j+2 k \\
& \overrightarrow{P S}=-2 j+S k \\
& \overrightarrow{P S} \times \vec{V}=\left|\begin{array}{ccc}
i & j & k \\
0 & -2 & 5 \\
1 & -1 & 2
\end{array}\right|=i+5 j+2 k \\
& |\overrightarrow{P S} \times \vec{V}|=\sqrt{1+2 S+Y}=\sqrt{30}
\end{aligned}
$$

Sol.

$$
|\vec{v}|=\sqrt{1+1+4}=\sqrt{6}
$$

$$
\therefore d=\frac{|\overrightarrow{P S} \times \vec{V}|}{|\vec{V}|}=\frac{\sqrt{30}}{\sqrt{6}}=\sqrt{5}
$$

An Equation for a Plane in Space
\qquad

EXAMPLE 6 Find an equation for the plane through $\begin{gathered}x_{0}(-3,0,7) \text { perpendicular to }\end{gathered}$ $\mathbf{n}=5 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$.

Sol.

$$
\begin{aligned}
& 5(x+3)+2(y-0)-1(z-7)=0 \\
& 5 x+15+2 y-z+7=0 \\
& 5 x+2 y-z=-22
\end{aligned}
$$

EXAMPLE 7 Find an equation for the plane through $A(0,0,1), B(2,0,0)$, and $C(0,3,0)$.

Sol.

$$
\begin{aligned}
\vec{n} & =\overrightarrow{A B} \times \overrightarrow{A C} \\
& =(2 i-k) \times(3 j-k) \\
& =\left|\begin{array}{ccc}
i & j & k \\
2 & 0 & -1 \\
0 & 3 & -1
\end{array}\right|=3 i+2 j+6 k
\end{aligned}
$$

You can take any point (Say $A(0,0,1)$)
The eq. for the plane is

$$
\begin{gathered}
3(x-0)+2(y-0)+6(z-1)=0 \\
3 x+2 y+6 z=6
\end{gathered}
$$

Rule. Two planes are parallel ifs their normals are parallel.
That is $M_{1} \| M_{2}$ iff $\vec{n}_{1}=k \vec{n}_{2}$, k scalar

- Two planes that are not parallel intersect in a line

EXAMPLE 8 Find a vector parallel to the line of intersection of the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$.

Sol.

$$
\begin{gathered}
\overrightarrow{n_{1}}=3 i-6 j-2 k, \vec{n}_{2}=2 i+j-2 k \\
\vec{V}=\vec{n}_{1} \times \overrightarrow{n_{2}}=\left|\begin{array}{ccc}
i & j & k \\
3 & -6 & -2 \\
2 & 1 & -2
\end{array}\right| \\
=14 i+2 j+15 k .
\end{gathered}
$$

EXAMPLE 9 Find parametric equations for the line in which the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$ intersect.

Sol. $\vec{V}=\vec{n}_{1} \times \vec{n}_{2}=14 i+2 j+15 k$ (see E $\times 8$)
put $z=0: \quad 3 x-6 y=15$

$$
\therefore \quad P_{0}(3,-1,0)
$$

$$
\begin{aligned}
\frac{6(2 x+y=5}{} & \\
15 x=45 & \Rightarrow x=3 \\
& \Rightarrow 2(3)+y=5 \\
& y=-1
\end{aligned}
$$

$$
\begin{aligned}
\therefore & \vec{n}=14 i+2 j+15 k \\
& P_{0}(3,-1,0) .
\end{aligned}
$$

the line is

$$
x=3+14 t, y=-1+2 t, z=15 t,-\infty<t \in \infty .
$$

EXAMPLE 10 Find the point where the line

$$
x=\frac{8}{3}+2 t, \quad y=-2 t, \quad z=1+t
$$

intersects the plane $3 x+2 y+6 z=6$.
Solution. $\quad 3\left(\frac{8}{3}+2 t\right)+2(-2 t)+6(1+t)=6$

$$
\begin{aligned}
& 8+\underbrace{6 t}-4 t+6+\underbrace{6 t}=6 \\
& 8 t+8=0 \Rightarrow t=-1 \\
& \therefore x=\frac{8}{3}+2(-1)=\frac{2}{3} \\
& y=-2(-1)=2 \\
& z=1-1=0
\end{aligned}
$$

\therefore The point is $P\left(\frac{2}{3}, 2,0\right)$.

The Distance from a Point to a Plane

- The distance from S to the plane is

$$
d=\left|\stackrel{\rightharpoonup}{P S} \cdot \frac{\mathbf{n}}{|\mathbf{n}|}\right|
$$

where $\mathbf{n}=A \mathbf{i}+B \mathbf{j}+C \mathbf{k}$ is normal to the plane.
EXAMPLE 11 Find the distance from $S(1,1,3)$ to the plane $3 x+2 y+6 z=6$.
Sol. $S(1,1,3) \quad, \vec{n}=3 i+2 j+6 k$

$$
\begin{array}{r}
P(0,0,1) \quad \text { put } x=y=0 \Rightarrow z=1 \\
\overrightarrow{P S}=i+j+2 k,|\vec{n}|=\sqrt{9+4+36}=7 \\
\overrightarrow{p S} \cdot \frac{\vec{n}}{|\vec{n}|}=(i+j+2 k) \cdot\left(\frac{3}{7} i+\frac{2}{7} j+\frac{6}{7} k\right) \\
=\frac{3}{7}+\frac{2}{7}+\frac{12}{7}=\frac{17}{7} \\
\therefore \text { distance }=\left|\overrightarrow{p s} \cdot \frac{\vec{n}}{|\vec{n}|}\right|=\left|\frac{17}{7}\right|=\frac{17}{7}
\end{array}
$$

Angles Between Planes
The angle between two intersecting planes is defined to be the acute angle between their normal vectors (Figure 12.42).

31

EXAMPLE 12 Find the angle between the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$.

Sol. $\quad \vec{n}_{1}=3 i-6 j-2 k, \quad \vec{n}_{2}=2 i+j-2 k$

$$
\begin{aligned}
& \theta=\cos ^{-1}\left(\frac{\mathbf{n}_{1} \cdot \mathbf{n}_{2}}{\left|\mathbf{n}_{1}\right|\left|\mathbf{n}_{2}\right|}\right) \\
&=\cos ^{-1}\left(\frac{(3)(2)-6(1)-2(-2)}{\sqrt{9+36+4} \sqrt{4+1+4}}\right) \\
&=\cos ^{-1}\left(\frac{4}{21}\right) \sim 1.38 \text { radian } \\
& 79^{\circ}
\end{aligned}
$$

Summary 12.5

- line + line segments in space.
- distance point, Line point, plane
- eq. of the plane in space.
- Intersections plane +plane \rightarrow Line plane + line \rightarrow point
- Angles between planes is the angle between Heir normals.

12.6 Cylinders and Quadric Surfaces

Cylinders

A cylinder is a surface that is generated by moving a straight line along a given planar curve while holding the line parallel to a given fixed line. The curve is called a generating curve for the cylinder (Figure 12.43). In solid geometry, where cylinder means circular cylinder, the generating curves are circles. but now we allow generating curves of any kind. The cylinder in our first example is generated by a parabola.

FIGURE 12.43 A cylinder and generating curve.

EXAMPLE 1 Find an equation for the cylinder made by the lines parallel to the z-axis that pass through the parabola $y=x^{2}, z=0$ (Figure 12.44).

$$
\left(x_{0}, x_{0}^{2}, z\right)
$$

Solution The point $P_{0}\left(x_{0}, x_{0}^{2}, 0\right)$ lies on the parabola $y=x^{2}$ in the $x y$-plane. Then, for any value of z, the point $Q\left(x_{0}, x_{0}^{2}, z\right)$ lies on the cylinder because it lies on the line $x=x_{0}, y=x_{0}^{2}$ through P_{0} parallel to the z-axis. Conversely, any point $Q\left(x_{0}, x_{0}^{2}, z\right)$ whose y-coordinate is the square of its x-coordinate lies on the cylinder because it lies on the line $x=x_{0}, y=x_{0}^{2}$ through P_{0} parallel to thez-axis Figure 12.44).

Regardless of the value of z, therefore, the points on the surface are the points whose coordinates satisfy the equation $y=x^{2}$. This make $y=x^{2}$ an equation for the cylinder. Because of this, we call the cylinder "the cylinder $y=x^{2}$."

Quadric Surfaces
A quadric surface is the graph in space of a second-degree equation in x, y, and z. We focus on the special equation

$$
A x^{2}+B y^{2}+C z^{2}+D z=E
$$

where A, B, C, D, and E are constants. The basic quadric surfaces are ellipsoids, paraboloids, elliptical cones, and hyperboloids. Spheres are special cases of ellipsoids. We present a few examples illustrating how to sketch a quadric surface, and then give a summary table of graphs of the basic types.

EXAMPLE 2 The ellipsoid

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \\
& z=0 \quad \frac{x^{2}}{a^{2}+}+\frac{y^{2}}{b^{2}}=1 \quad \text { ellipse in } x y \text {-plane } \\
& x=0 \quad \frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \quad \text {.. } \quad y z \text { plane } \\
& y=0 \quad \frac{x^{2}}{a^{2}}+\frac{z^{2}}{c^{2}}=1 \quad \text {.. } x z \text {-plane }
\end{aligned}
$$

FIGURE 12.45 The ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

in Example 2 has elliptical cross-sections in each of the three coordinate planes.

If any two of the semiaxes a, b, and c are equal, the surface is an ellipsoid of revolution. If all three are equal, the surface is a sphere.

Sketch

$$
\begin{aligned}
& z=5-\left(x^{2}+y^{2}\right) \\
& x^{2}+y^{2}=5-z
\end{aligned}
$$

The line $z=-\frac{c}{b} y$ in the $y z$-plane \qquad
$\underset{ }{z}$ The ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in the plane $z=c$

$$
y^{2}-z
$$

$$
y^{2}+z^{2}=x^{2}
$$ ELLIPTICAL CONE

$$
\begin{aligned}
& \text { ex. } x^{2}+y^{2}=z^{2} \quad \text { circus cone } \\
& \text { ex. sketch } z=\sqrt{x^{2}+y^{2}} \geqslant 0 \\
& \text { ex. } x^{2}+y^{2}=-z^{2} \\
& x^{2}+y^{2}+z^{2}=0 \\
& \Rightarrow x=y=z=0 \quad(0,0,0) \quad \text { point } \\
& \quad(\text { origin })
\end{aligned}
$$

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}
$$

 sketch the common region.

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

The parabola $z=\frac{c}{b^{2}} y^{2}$ in the $y z$-plane \quad Part of the hyperbola $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$

The parabola $z=-\frac{c}{a^{2}} x^{2}$ in the $x z$-plane

HYPERBOLOID OF TWO SHEETS

$$
\frac{z^{2}}{c^{2}}-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

HYPERBOLIC PARABOLOID $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=\frac{z}{c}, \quad c>0$

DisCussion $(12.1-12.4)$
38
Sunday, July 04, 2021

12.1	660	$8,12,14(20)$

20. a. $x^{2}+y^{2} \leq 1, \quad z=0$
b. $x^{2}+y^{2} \leq 1, \quad z=3$
c. $x^{2}+y^{2} \leq 1$, no restriction on z
(a) the interior of the circle $x^{2}+y^{2}=1$
t the boundary in the $x y$-plane
(4) r, \ldots in the plane $z=3$.
(c)
(c) A solid cylindrical column of radius 1 whose axis is the z -axis
21. The solid cube in the first octant bounded by the coordinate planes and the planes $x=2, y=2$, and $z=2$

Sol

$$
0 \leqslant x \leq 2, \quad 0 \leq y \leq 2, \quad 0 \leq z \leq 2
$$

24. a. $z=1-y$ no restriction on x ($x, y, 1-y)$
b. $z=y^{3}, \quad x=2$

Sol. (a) All points that lie on the $(x, y, 1-y)$ plane $\quad z=1-y$.
(b) $\left(2, y, y^{3}\right)$

$$
z+y=1
$$

All points that lie
on the curve $z=y^{3}$
in the plane $x=2 \quad 2=0 \quad(x, 1,0)$
| 7, 10, 15, 18, 22, 25, 33, 40, 42
42. Linear combination Let $\mathbf{u}=\mathbf{i}-2 \mathbf{j}, \mathbf{v}=2 \mathbf{i}+3 \mathbf{j}$, and $\mathbf{w}=$ $\mathbf{i}+\mathbf{j}$. Write $\mathbf{u}=\mathbf{u}_{1}+\mathbf{u}_{2}$, where \mathbf{u}_{1} is parallel to \mathbf{v} and \mathbf{u}_{2} is parallee to w. (See Exercise 41.)
$\vec{u}, / / \vec{v}$

$$
u_{1}=a \vec{v} \quad \vec{u}_{2}=b \vec{w}
$$

Sol.

$$
\begin{align*}
& \vec{u}=a \vec{v}+b \vec{w} \\
& i-2 j=a(2 i+3 j)+b(i+j) \\
& i-2 j=(2 a+b) i+(3 a+b) j \\
& 2 a+b=1-(A) \\
& 3 a+b=-2=(B) \tag{B}\\
& (B)-(A): a=-3) \\
& \vec{u}=a \vec{v}=-3(2 i+3 j) \\
& \therefore \vec{u}=-6 i-9 j \\
& \vec{u}=7=1
\end{align*}
$$

Notice $\vec{u}_{1} / / \vec{v}, \vec{M}_{2} \| \vec{w}$ and

$$
\begin{aligned}
\vec{u}_{1}+\vec{u}_{2} & =-6 i-9 j+7 i+7 j \\
= & i-2 j=\vec{u}
\end{aligned}
$$

12.3	674	$5,10,17,20,31,33,45$

31. Line perpendicular to a vector Show that $\mathbf{v}=a \mathbf{i}+b \mathbf{j}$ is perpendicular to the line $a x+b y=c$ by establishing that the slope of the vector \mathbf{v} is the negative reciprocal of the slope of the given line.

$$
\overrightarrow{p Q} \cdot \vec{V}=0
$$

Case

$$
\begin{aligned}
& \begin{array}{l}
b \neq 0 \\
a x+b y=c \Rightarrow b y=-a x+c \\
y=-\frac{a}{b} x+\frac{c}{b} \\
P\left(x_{1},-\frac{a}{b} x_{1}+\frac{c}{b}\right), b \neq 0
\end{array} \\
& \overrightarrow{P\left(x^{\prime}\right.}=-\frac{a}{b} \\
& \left.\overrightarrow{P Q}=\left(x_{2}-x_{1}\right) i+\frac{a}{b} x_{2}+\frac{c}{b}\right) \\
& \vec{P}=\left(x_{2}-x_{1}\right) i-\frac{a}{b}\left(x_{2}-x_{1}\right) j \\
& \left.\overrightarrow{P G}=a i+\frac{a}{b} x_{1}\right) j \\
& \vec{P}=a\left(x_{2}-x_{1}\right)-\frac{a}{b}\left(x_{2}-x_{1}\right)(b) \\
& =a\left(x_{2}-x_{1}\right)-a\left(x_{2}-x_{1}\right)=0
\end{aligned}
$$

Case $2 \quad b=0$

$$
\vec{V}=a i \quad, \quad a x=c
$$

\vec{V} is perperdicaler to the vertical line $a x=c$
17. Sums and differences In the accompanying figure, it looks as if $\mathbf{v}_{1}+\mathbf{v}_{2}$ and $\mathbf{v}_{1}-\mathbf{v}_{2}$ are orthogonal. Is this mere coincidence, or are there circumstances under which we may expect the sum of two vectors to be orthogonal to their difference? Give reasons for your answer.

The sum of two vectors of equal length is always orthogonal to their difference,

$$
\vec{u}+\vec{v} \perp \vec{u}-\vec{v} \text { if }|\vec{u}|=|\vec{v}| .
$$

12.4	682	$3,16,20,23,27,34,40,45$

34. Double cancellation If $\{\mathbf{u} \neq 0$ and if $\mathbf{u} \times \mathbf{v}=\mathbf{u} \times \mathbf{w}$ and $\mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{w}$ then does $\mathbf{v}=\mathbf{w}$? Give reasons for your answer.
yes.
proof. $\vec{u} \times \vec{v}=\vec{u} \times \vec{w} \Rightarrow \vec{u} \times(\vec{v}-\vec{w})=\overrightarrow{0}$

$$
\begin{equation*}
\vec{u} \cdot \vec{v}=\vec{u} \cdot \vec{w} \Rightarrow \vec{u} \cdot(\vec{v}-\vec{w})=0 \tag{1}
\end{equation*}
$$

Suppose $\vec{V} \neq \vec{W}$. Then

$$
E q(1) \Rightarrow \vec{V}-\vec{w} / / \vec{u}
$$

$$
\vec{v}-\vec{w}=\alpha \vec{u}, \alpha \neq 0
$$ scalar

put (3) into (2)

$$
\begin{aligned}
& \vec{u} \cdot(\alpha \vec{u})=0 \\
& \alpha(\vec{u} \cdot \vec{k})=0 \\
& \\
& \alpha|\vec{u}|^{2}=0, \alpha \neq 0 \\
& \Rightarrow \vec{u}=\overrightarrow{0} \quad \text { contradiction. } \\
& \therefore \vec{V}=\vec{w}
\end{aligned}
$$

Vector-Valued
Functions and Motion
in Space
13.1 Curves in Space and Their Tangents
when a particle P moves through the space during a time $t \in I^{\prime \prime}$ interval", then the coordinates of this particle defined on I as

$$
x=f(t), y=g(t), z=h(t), \quad t \in I
$$

FIGURE 13.1 The position vector $\mathbf{r}=\overrightarrow{O P}$ of a particle moving through
(1) space is a function of time.
the set C of all points $(x, y, z)=(f(t), g(t), h(t))$, $t \in I$ is Called a space curve.

- eq (I) is Called parametric eqs of C and t is called a parameter.
- Acuive inspace can beats represented
in vector form: $\vec{r}(t)=\overrightarrow{O p}$

$$
\vec{r}(t)=f(t) i+g(t) j+h(t) k
$$

is the vector from $(0,0,0)$ to $P(f(t), g(t), h(\theta)$ at time t is called the particle's position vector.

- f, g, h are called the component functions of $\vec{r}(t)$

Def. (vector function).
A vector function or a vector valued function is a function whose domain is a set of real numbers and whose range is a set of vectors.

$$
\begin{aligned}
\vec{r}(t) & =f(t) i+g(t) j+h(t) k \\
t & \longmapsto \\
\in \mathbb{R} & \langle\underbrace{f(t), g(t), h(t)\rangle}_{\in \text { vectors. }}
\end{aligned}
$$

- Real valued functions ave called scalar functions.
. The Components of \vec{r} are SCar functions of t.
- The domain of avectur function is the common domain of its components i.e. $\operatorname{Dom}(\vec{r}(t))=\operatorname{Dom}(f) \cap \operatorname{Dim}(g) \cap \operatorname{Dom}(h$.

Ex. If $\vec{r}(t)=t^{3} i+\ln (3-t) j+\sqrt{t} k$
Find (a) $\vec{r}(2)$ (b) $\operatorname{Domain}(\vec{r}(t))$.
Sol. $\vec{r}(2)=8 i+\ln (3-2) j+\sqrt{2} k$

$$
=8 i+\sqrt{2} k
$$

(b)

$$
\begin{align*}
& f(t)=t^{3}, g(t)=\ln (3-t), h(t)=\sqrt{t} \\
& D_{f}=(-\infty, \infty), D_{g}: 3-t>0 \Rightarrow t<3 \\
& D_{g}=(-\infty, 3) \\
& D_{h}: t \geqslant 0 \Rightarrow[0, \infty)=D_{h} \underset{t_{0}}{\therefore D_{\vec{r}(t)}=[0,3)} \tag{0}
\end{align*}
$$

EXAMPLE 1 Graph the vector function

$$
\mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}+t \mathbf{k}
$$

Solution $x(t)=\cos t, \quad y(t)=\sin t, \quad z(t)=t$,

$$
\begin{aligned}
& x^{2}(t)+y^{2}(t)=\cos ^{2} t+\sin ^{2} t=1 \\
& t=0: \quad \vec{r}(0)=i \\
& t=\frac{\pi}{2} \quad \vec{r}\left(\frac{\pi}{2}\right)=\cos \frac{\pi}{2} i+\sin \frac{\pi}{2} j+\frac{\pi}{2} k
\end{aligned}
$$

$$
=j+\frac{\pi}{2} k .
$$

FIGURE 13.3 The upper half of the
helix $\mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}+t \mathbf{k}$
spiral.

$\mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}+t \mathbf{k}$

$\mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}+0.3 t \mathbf{k}$

$\mathbf{r}(t)=(\cos 5 t) \mathbf{i}+(\sin 5 t) \mathbf{j}+t \mathbf{k}$

FIGURE 13.4 Helices spiral upward around a cylinder, like coiled springs.

Limits and Continuity

$$
\begin{aligned}
& \vec{r}(t)= x(t) i+y(t) j+z(t) k \\
& \lim _{t \rightarrow t_{0}} \vec{r}(t)=\left(\lim _{t \rightarrow t_{0}} x(t)\right) i+\left(\lim _{t \rightarrow t_{0}} y(t)\right) j \\
&+\left(\lim _{t \rightarrow t_{0}} z(t)\right) k \\
& \text { provided compos the himits }
\end{aligned}
$$

provided the limits of the components
$e_{x .} \quad \vec{r}(t)=\widetilde{\left(\frac{t^{2}-1}{x-1}\right)} i+\frac{\widetilde{\sin ^{\prime} t}}{t} j+(\ln t) k$
find $\lim _{t \rightarrow 1} \vec{r}(t)$
So 1. $\lim _{t \rightarrow 1} x(t)=\lim _{t \rightarrow 1} \frac{t^{2}-1}{t-1}\left(\frac{0}{0}\right)$

$$
\begin{aligned}
& =\lim _{t \rightarrow 1} \frac{2 t}{1}=2 \\
\lim _{t \rightarrow 1} y(t)= & \lim _{t \rightarrow 1} \frac{\sin t}{t}=\sin 1 \\
\lim _{t \rightarrow 1} z(t) & =\lim _{t \rightarrow 1} \ln t=\ln 1=0 \\
\therefore \lim _{t \rightarrow 1} \vec{r}(t) & =2 i+(\sin 1) j
\end{aligned}
$$

Ex. $\vec{r}(t)=\left(l+t^{3}\right) i+t e^{-t} j+\frac{\sin t}{t} k$ Find $\lim _{t \rightarrow 0} \vec{r}(t)$
Sol. $\left.\lim _{t \rightarrow 0} \vec{r}(t)=\left[\lim _{t \rightarrow 0}\left(1+t^{3}\right)\right] i+\lim _{t \rightarrow 0} t e^{-t}\right) j$

47
9:13 PM

$$
\begin{aligned}
& \quad+\left(\lim _{t \rightarrow 0} \frac{\sin t}{t}\right) k \\
& =i+k
\end{aligned}
$$

Df (continuity)

- Avector function $\vec{r}(t)$ is continuous at $t=t_{0}$ in its domain if

$$
\lim _{t \rightarrow t_{0}} \vec{r}(t)=\vec{r}\left(t_{0}\right)
$$

- The vector function is cont. on D if it is cont. at every points in D.
ex. Where $\vec{r}(t)=(\cos t) i+(\sin t) j+t k$ is continuous?
Ans. cont. on $(-\infty, \infty)$.
Ex. $\left.\vec{\gamma}_{(t)}=(\cos t) i+(\sin t) j+L t\right\rfloor k$
is cont. on $(-\infty, \infty) \backslash\{0, \pm 1, \pm 2, \pm 3, \ldots\}$

DEFINITION The vector function $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$ has a derivative (is differentiable) at t if f, g, and h have derivatives at t. The derivative is the vector function

$$
\begin{aligned}
{\overrightarrow{\mathbf{r}^{\prime}}(t)=\left(\frac{d \mathbf{r}}{d t}\right)=}_{\lim _{\Delta t \rightarrow 0} \frac{\mathbf{r}(t+\Delta t)-\mathbf{r}(t)}{\Delta t}}^{\Delta i=} & =\frac{d f}{d t} \mathbf{i}+\frac{d g}{d t} \mathbf{j}+\frac{d h}{d t} \mathbf{k} \\
& =f^{\prime}(t) i+g^{\prime}(t) j+h^{\prime}(t) k
\end{aligned}
$$

Ex. $\quad \vec{r}(t)=(\ln t) i+\frac{t+1}{t+2} j+(t \ln t) k$
Find $\frac{d \vec{r}}{d t}$ at $t=1$.
Sol.

$$
\begin{aligned}
\frac{d \vec{r}}{d t} & =\frac{d}{d t}(\ln t) i+\frac{d}{d t}\left(\frac{t+1}{t+2}\right) j+\frac{d}{d t}(t \ln t) k \\
& =\frac{1}{t} i+\frac{(t+2)(1)-(t+1)(1)}{(t+2)^{2}} j+\left(t \cdot \frac{1}{t}+\ln t \cdot 1\right)_{k} \\
= & \frac{1}{t} i+\frac{1}{(t+2)^{2}} j+(1+\ln t) k
\end{aligned}
$$

At $t=1, \frac{d \vec{r}}{d t}=i+\frac{1}{9} j+k$
Rok.
The target line to the
curve at a point
$P\left(f\left(t_{0}\right), g\left(t_{0}\right), h\left(t_{0}\right)\right)$ is defined to be the fine through P parallel to $\vec{V}=\frac{d \vec{r}}{d t}$
Ex. Girl parametric eqs for the at $t=t$ 。 - rem $_{0}$ line tangent to the curse $12.5 \quad \vec{r}(t)=(\ln t) i+\left(\frac{t+1}{t+2}\right) j+(t \ln t) k$ at $t_{0}=1$
Sol. $\vec{\gamma}(1)=\ln 1 i+\frac{2}{3} j+\ln 1 k p\left(0, \frac{2}{3}, 0\right)$

$$
\vec{V}=\left.\frac{d \vec{r}}{d t}\right|_{t=1}=i+\frac{1}{9} j+k
$$

\therefore Parametric eos

$$
\begin{aligned}
& x=0+t=t \\
& y=\frac{2}{3}+\frac{1}{9} t \\
& z=0+t=t
\end{aligned}
$$

Runic. (1) Avectir function $\vec{r}(t)$ is difftble if it is diffble at every point of its domain.
(2) The curve traced by $\vec{r}(t)$ is Smooth if $\frac{d \vec{r}}{d t}$ is continuous and $\frac{d \vec{r}}{\delta t} \neq \overrightarrow{0}$.
(3) The curve is Called piecewise smooth if it is made up of a finite number of smooth curves pieced together in continuous fashion.

ExC:

C_{1}, C_{2}, C_{3} are Smooth Curves but the Curve C is piecewise smooth.

DEFINITIONS If \mathbf{r} is the position vector of a particle moving along a smooth curve in space, then

$$
\mathbf{v}(t)=\frac{d \mathbf{r}}{d t}
$$

is the particle's velocity vector, tangent to the curve. At any time t, the direction of \mathbf{v} is the direction of motion, the magnitude of \mathbf{v} is the particle's speed, and the derivative $\mathbf{a}=d \mathbf{v} / d t$, when it exists, is the particle's acceleration vector. In summary,

1. Velocity is the derivative of position:

$$
\mathbf{v}=\frac{d \mathbf{r}}{d t}
$$

2. Speed is the magnitude of velocity:

$$
\text { Speed }=|\mathbf{v}| \text {. }
$$

3. Acceleration is the derivative of velocity:

$$
\mathbf{a}=\frac{d \mathbf{v}}{d t}=\frac{d^{2} \mathbf{r}}{d t^{2}}
$$

4. The unit vector $\mathbf{v} /|\mathbf{v}|$ is the direction of motion at time t.

Ex. If $\left(\vec{r}(t)=e^{-t} i+(2 \cos 3 t) j+(2 \sin 3 t) k\right.$
is the position vector. find
the velocity, speed, acceleration, direction at $t=0$.
Sol $\left.\underset{\vec{v}(t)}{\vec{v}(t)}=\frac{d \vec{r}}{d t}=-e^{-t} i-(6 \sin 3 t) j+(6 \cos 3) k\right)$

$$
\vec{V}(0)=-i+6 k .
$$

Speed at $t=0$ is $|\vec{v}(0)|=\sqrt{1+36}=\sqrt{37}$

$$
\begin{aligned}
\vec{a}(t) & =\frac{d \vec{V}}{d t}=e^{-t} i-(18 \cos 3 t) j-(18 \sin 3 t) k \\
\vec{a}(0) & =i-18 j \\
\vec{V}(0) & =(\text { speed }) \text { (direction) }
\end{aligned}
$$

$$
\begin{aligned}
& =|\vec{V}(0)| \frac{\vec{V}(0)}{|\vec{V}(0)|} \\
& =\sqrt{37}\left(-\frac{1}{\sqrt{37}} i+\frac{6}{\sqrt{37}} k\right) .
\end{aligned}
$$

Ex. $\vec{r}(t)=4 \cos \left(\frac{t}{2}\right) i+\left(4 \sin \frac{t}{2}\right) j$
Find:
(a) $\vec{V}(\pi)$ and $\vec{a}(\pi)$
(b) Sketch them as vectors on the Curve. Sol. (C) the angle between $\vec{V}(T)$ and $\vec{a}(T)$.
Sol. (a) $\vec{V}(t)=\frac{d \vec{r}}{d t}=-2 \sin \left(\frac{t}{2}\right) i+2 \cos \left(\frac{t}{2}\right) j$

$$
\begin{aligned}
& \vec{a}(t)=\frac{d \vec{V}}{d t}=-\cos \left(\frac{t}{2}\right) i-\sin \left(\frac{t}{2}\right) j \\
& \vec{V}(\pi)=-2 i \quad, \vec{a}(\pi)=-j
\end{aligned}
$$

(b) $x(t)=4 \cos \left(\frac{t}{2}\right), y=4 \sin \left(\frac{t}{2}\right)$

$$
\begin{aligned}
& x^{2}+y^{2}=16\left(\cos ^{2} \frac{t}{2}+\sin ^{2} \frac{t}{2}\right)=16 \\
& \therefore x^{2}+y^{2}=16 \\
& \text { At } t=\pi, x=0, y=4 \quad(0,4)
\end{aligned}
$$

(C) Angle between
$\vec{V}(\pi)$ and $\vec{a}(\pi)$
Sol. $\vec{V}(T)=-2 i, \quad \vec{a}(T)=-j$

$$
\theta=\cos ^{-1}\left(\frac{\vec{v}(\pi) \cdot \vec{\alpha}(\pi)}{|\vec{v}(\pi)||\vec{a}(\pi)|}\right)
$$

$$
=\cos ^{-1}\left(\frac{-2(0)+0(-1)}{(2)(1)}\right)
$$

$$
=\cos ^{-1}(0)=\pi / 2 .
$$

Differentiation Rules

Differentiation Rules for Vector Functions

$$
\vec{C}=c_{1} i+c_{2} j+c_{3} k
$$

Let \mathbf{u} and \mathbf{v} be differentiable vector functions of t, \mathbf{C} a constant vector, c any scalar, and f any differentiable scalar function.

1. Constant Function Rule: $\quad \frac{d}{d t} \mathbf{C}=\overrightarrow{\mathbf{0}}$

$$
\vec{U}(t)=U_{1}(t) i+U_{2}(t){ }^{2}+U_{3}(t) k
$$

$$
\vec{V}(t)=V_{1}(t) i+V_{2}(t) \cdot+V_{3}(t) k
$$

2. Scalar Multiple Rules: $\quad \checkmark \frac{d}{d t}[c \mathbf{u}(t)]=c \mathbf{u}^{\prime}(t)$

$$
\frac{d}{d t}[f(t) \mathbf{\mathbf { l }}(t)]=f^{\prime}(t) \mathbf{u}(t)+f(t) \mathbf{u}^{\prime}(t)
$$

3. Sum Rule:

$$
\frac{d}{d t}\left[\mathbf{u}(t) \not(\mathbf{v}(t)]=\mathbf{u}^{\prime}(t)+\mathbf{v}^{\prime}(t)\right.
$$

4. Difference Rule:

$$
\frac{d}{d t}[\mathbf{u}(t) \Theta \mathbf{v}(t)]=\mathbf{u}^{\prime}(t)-\mathbf{v}^{\prime}(t) \cup
$$

5. Dot Product Rule:

$$
\frac{d}{d t}[\mathbf{u}(t): \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t)
$$

6. Cross Product Rule:

$$
\frac{d}{d t}[\mathbf{u}(t) \times \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)
$$

7. Chain Rule:

$$
\frac{d}{d t}[\mathbf{u}(f(t))]=f^{\prime}(t) \mathbf{u}^{\prime}(f(t))
$$

$|\vec{r}(t)|=$ Constant
Ex. If r is a differentiable vector function of t of constant length, then

$$
\mathbf{r} \cdot \frac{d \mathbf{r}}{d t}=0
$$

Sol. $|\vec{\gamma}(t)|=k$

53
$|\vec{r}(t)|^{2}=k^{2}, k$ is constant.

$$
\begin{gathered}
\vec{r}(t) \cdot \vec{r}(t)=k^{2} \quad \vec{v} \cdot \vec{r}=|\vec{v}|^{2} \\
\frac{d}{d t}(\vec{r}(t) \cdot \vec{r}(t))=\frac{d}{d t}\left(k^{2}\right) \\
\vec{r} \cdot \frac{d \vec{r}}{d t}+\frac{d \vec{r}}{d t} \cdot \vec{r}=0 \\
2\left(\vec{r} \cdot \frac{d \vec{r}}{d t}\right)=0 \\
\Rightarrow \vec{r} \cdot \frac{d \vec{r}}{d t}=0
\end{gathered}
$$

ex $\overrightarrow{=}(t)=\cos i+\sin t j,|\vec{r}(t)|=\sqrt{\cos ^{3} t \sin ^{2} t}$

$$
\vec{r} \cdot \frac{d z}{\partial t}=(\cos t i+\sin t j) \cdot(-\sin t i+\cos t j)=0
$$

Ex. The converse of the last example is tax
If $\vec{r} \cdot \frac{d \vec{r}}{d t}=0$, then $|\vec{r}(t)|=$ constant.
Proof. $|\vec{r}|^{2}=\vec{r} \cdot \vec{r}$

$$
\begin{aligned}
& \frac{d}{d t}|\vec{r}|^{2}=2 \vec{r} \cdot \frac{d \vec{r}}{d t}=2(0)=0 \\
& \Rightarrow \frac{d}{d t}|\vec{r}|^{2}=0 \\
& |\vec{r}(t)|^{2}=\text { constant } \\
& |\vec{r}(t)|=\text { constant. }
\end{aligned}
$$

Integrals of Vector Functions

DEFINITION The indefinite integral of \mathbf{r} with respect to t is the set of all antiderivatives of \mathbf{r}, denoted by $\int \mathbf{r}(t) d t$. If \mathbf{R} is any antiderivative of \mathbf{r}, then

$$
\begin{gathered}
\int \mathbf{r}(t) d t=\mathbf{R}(t) \text { C. Vector } \\
\text { Ex. } \int((\cos t) \mathbf{i}+\mathbf{j}-2 t \mathbf{k}) d t \\
=\left(\int \cos t d t\right) i+\left(\int 1 d t\right) j-\left(\int 2 t d t\right) k \\
=\left(\sin t+c_{1}\right) i+\left(t+c_{2}\right) j-\left(t^{2}+c_{3}\right) k \\
=(\sin t) i+t j-t^{2} k+\vec{C} \text {, where } \\
=\vec{C}=c_{1} i+c_{2} j+c_{3} k \\
\underline{\underline{e x .}} \int\left[\left(\frac{12}{1-t^{2}}\right) i+\left(\frac{\sqrt{3}}{1+t^{2}}\right) k\right] d t \\
= \\
2 \int \frac{1}{\sqrt{1-t^{2}}} d t i+\sqrt{3} \int \frac{1}{1+t^{2}} d t k \\
=\left(2 \sin ^{-1} t\right) i+\left(\sqrt{3} \tan ^{-1} t\right) k .
\end{gathered}
$$

DEFINITION If the components of $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$ are integrable over $[a, b]$, then so is \mathbf{r}, and the definite integral of \mathbf{r} from a to b is

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left(\int_{a}^{b} f(t) d t\right) \mathbf{i}+\left(\int_{a}^{b} g(t) d t\right) \mathbf{j}+\left(\int_{a}^{b} h(t) d t\right) \mathbf{k}
$$

$$
\begin{aligned}
& \text { Ex. } \int_{0}^{\pi / 3}[(\sec t \tan t) i+(\tan t) j+(2 \sin t \cos t) k] d t \\
& =\left(\int_{0}^{\pi / 3} \sec t \tan t d t\right) i+(-\int_{0}^{\pi / 3} \underbrace{\frac{-\sin t}{\cos t} d t}) j+\int_{0}^{\pi / 3} \sin (2 t) d t) k \\
& \int \frac{u^{\prime}}{\pi} d u \\
& =\operatorname{Lnc}=\left.\sec t\right|_{0} ^{\pi / 3} i+-\left.\ln |\cos t|\right|_{0} ^{\pi / 3}+-\left.\frac{\cos (2 t)}{2}\right|_{0} ^{\pi / 3} k \\
& =(2-1) i+\left(-\operatorname{Ln}\left(\frac{1}{2}\right)+\operatorname{Ln} 1\right) j+\left(\frac{\frac{1}{2}}{2}+\frac{1}{2}\right) k \\
& =i+(\ln 2) j+\frac{3}{4} k \text {. }
\end{aligned}
$$

Q10) $I=\int_{0}^{\frac{\pi}{4}}\left(\sec t i+\tan ^{2} t j-t \sin t k\right) d t$

$$
\begin{aligned}
I_{1}=\int_{0}^{\frac{\pi}{4}} \sec t d t & =\left.\ln |\sec t+\tan t|\right|_{0} ^{\pi / 4} \\
= & \ln \left|\sec \frac{\pi}{4}+\tan \frac{\pi}{4}\right|_{0}^{0}-\ln |\sec 0+\tan | \\
I_{2}=\int_{0}^{\pi / 4} \tan ^{2} t d t= & \int_{0}^{\pi / 4}\left(\sec ^{2} t-1\right) d t \\
= & \left.(\tan t-t)\right|_{0} ^{\pi / 4} \\
& =\left(\tan \frac{\pi}{4}-\frac{\pi}{4}\right)-(0-0) \\
& =\left(1-\frac{\pi}{4}\right)
\end{aligned}
$$

$$
I_{3}=\int_{0}^{\pi / 3} t \sin t d t
$$

$f+$ its dess. $g+i t s$ integrals

$$
\begin{aligned}
I_{3} & =\left.(-t \cos t+\sin t)\right|_{0} ^{\pi / 4} \\
& =\left(-\frac{\pi}{4} \cos \frac{\pi}{4}+\sin \frac{\pi}{4}\right)-(0+0) \\
& =-\frac{\pi \sqrt{2}}{8}+\frac{\sqrt{2}}{2}=\frac{(4-\pi) \sqrt{2}}{8} \\
\therefore I & =I_{1} i+I_{2} j+I_{3} k \\
& =\ln (1+\sqrt{2}) i+\left(1-\frac{\pi}{4}\right) j+\left(\frac{4-\pi}{8}\right) \sqrt{2} k
\end{aligned}
$$

12. Differential equation: $\quad \frac{d \mathbf{r}}{d t}=(180 t) \mathbf{i}+\left(180 t-16 t^{2}\right) \mathbf{j}$

Initial condition: $\quad r(0)=100 \mathbf{j}$
Find \vec{r}

$$
\begin{array}{r}
\vec{r}(t)=\int\left[(180 t) i+\left(180 t-16 t^{2}\right) j\right] d t \\
\vec{r}(t)=90 t^{2} i+\left(90 t^{2}-\frac{16}{3} t^{3}\right) j+\vec{C} \\
\vec{r}(0)=0 i+(0-0) j+\vec{C}=100 j \\
\therefore \vec{r}(t)=\left(90 t^{2}\right) i+\left(90 t^{2}-\frac{16}{3} t^{3}+100\right) j: \vec{C}=100 j
\end{array}
$$

13.3 Arc Length in Space

Arc Length Along a Space Curve
DEFINITION The length of a smooth curve $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$,
$a \leq t \leq b$, that is traced exactly once as t increases from $t=a$ to $t=b$, is

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

Arc Length Formula

$$
L=\int_{a}^{b}|\mathbf{v}| d t
$$

(7) Ex. Find the length of the curve

$$
\mathbf{r}(t)=(t \cos t) \mathbf{i}+(t \sin t) \mathbf{j}+(2 \sqrt{2} / 3) t^{3 / 2} \mathbf{k}, \quad 0 \leq t \leq \pi
$$

Sol. $x(t)=t \cos t, \quad y(t)=t \sin t, \quad z(t)=\frac{2 \sqrt{2}}{3} t^{3 / 2}$

$$
\begin{aligned}
& \frac{d x}{d t}= \cos t-t \sin t, \frac{d y}{d t}=\sin t+t \cos t \\
& \therefore \quad \frac{d z}{d t}=\frac{2 \sqrt{2}}{3} \cdot \frac{3}{2} t^{\frac{1}{2}}=\sqrt{2} t^{\frac{1}{2}} \\
& \therefore \quad\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2} \\
&=(\cos t-t \sin t)^{2}+\left(\sin t+(t \cos t)^{2}+\left(\sqrt{2} t^{\frac{1}{2}}\right)^{2}\right. \\
&= \underbrace{\cos ^{2} t}-2 t \cos t \sin t+t^{2} \sin ^{2} t+\underbrace{\sin ^{2} t} \\
&=+2 t \sin t \cos ^{2} t+\operatorname{cin}^{2} t+t^{2} \cos ^{2} t+2 t \\
&=\left.1+t^{2}+2 t \sin ^{2} t+\cos ^{2} t\right)+2 t \\
&=\mid 1+t)^{2} \\
& \therefore \quad|V(t)|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}}=\sqrt{(1+t)^{2}}
\end{aligned}
$$

58

$$
\begin{aligned}
\therefore L=\int_{0}^{\pi}|V(t)| d t & =\int_{0}^{\pi} \frac{\mid \geq 0}{|1+t| d t} \frac{-1-t, 1+t]}{-1 t_{0}} \\
& =\int_{0}^{\pi}(1+t) d t \\
& =\left.\left(t+\frac{t^{2}}{2}\right)\right|_{0} ^{\pi} \\
& =\pi+\frac{\pi^{2}}{2}
\end{aligned}
$$

Unit Tangent Vector

$$
\vec{T}=\frac{\vec{V}(t)}{|\vec{V}(t)|}
$$

is Called aunit tangent vector to the smooth

$$
\text { Curve (} \left.\frac{\partial \vec{r}}{\partial t} \neq 0\right)
$$

FIGURE 13.15 We find the unit tangent vector \mathbf{T} by dividing \mathbf{v} by $|\mathbf{v}|$.

EXAMPLE 3 Find the unit tangent vector of the curve

$$
\mathbf{r}(t)=(3 \cos t) \mathbf{i}+(3 \sin t) \mathbf{j}+t^{2} \mathbf{k}
$$

Sol. $\vec{V}(t)=\frac{d \vec{r}}{d t}=(-3 \sin t) i+(3 \cos t) j+(2 t) k$.

$$
\begin{aligned}
|\vec{V}(t)|= & \sqrt{(-3 \sin t)^{2}+(3 \cos t)^{2}+(2 t)^{2}} \\
& =\sqrt{9\left(\sin ^{2} t+\cos ^{2} t\right)+4 t^{2}} \\
= & \sqrt{9+4 t^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{T}=\frac{\vec{V}(t)}{|\vec{V}(t)|} \\
& \vec{T}=\frac{-3 \sin t}{\sqrt{9+4 t^{2}}} i+\frac{3 \cos t}{\sqrt{9+4 t^{2}}} j+\frac{2 t}{\sqrt{9+4 t^{2}}} k
\end{aligned}
$$

Arc Length Parameter with Base Point $P\left(t_{0}\right)$ a tob

$$
\left.S(b)=L=\int_{a}^{s(t)}\right)=\int_{t_{0}}^{(t)} \sqrt{\sqrt{\left[x^{\prime}(\tau)\right]^{2}+\left[y^{\prime}(\tau)\right]^{2}+\left[z^{\prime}(\tau)\right]^{2}}} d \tau=\int_{t_{0}}^{t}|v(t)| d t
$$

FIGURE 13.14 The directed distance along the curve from $P\left(t_{0}\right)$ to any point $P(t)$ is

$$
s(t)=\int_{t_{0}}^{t}|\mathbf{v}(\tau)| d \tau
$$

Ex. consider $\vec{\gamma}(t)=(4 \cos t) i+(4 \sin t) j+3 t k$
(a) Find the arc length parameter with base $P(0)$ on $\sigma \leq t \leq \frac{\pi}{4}$.
(b) Use (a), to find the length of the curve on $\frac{\pi}{2} \leq t \leq \pi$.
Sol. (a) $S(t)=\int_{0}^{t}|V(\tau)| d \tau$.

$$
V(t)=\vec{r}^{\prime}(t)=(-4 \sin t) i+(4 \cos t) j+3 k
$$

$$
\begin{aligned}
&|\vec{V}(t)|=\sqrt{16 \sin ^{2} t+16 \cos ^{2} t+9} \\
&=\sqrt{16(1)+9}=\sqrt{25}=5 \\
& \therefore S(t)=\int_{0}^{t}|V(\tau)| d \tau=\int_{0}^{t} 5 d \tau \\
& \therefore \quad S(t)=5 t \quad t=0 \rightarrow t=5 \tau
\end{aligned}
$$

Rec. length from $t=0$ to $t=\frac{\pi}{4}$ is

$$
S\left(\frac{\pi}{4}\right)=5 \frac{\pi}{4}
$$

(b) The length of the curve on

$$
\begin{aligned}
& \frac{\pi}{2} \leq t \leq \pi \quad \text { is } \\
& S(\pi)-S\left(\frac{\pi}{2}\right)=5 \pi-5 \frac{\pi}{2} \\
&=\frac{5 \pi}{2} .
\end{aligned}
$$

Rm|c. $s(t)=\int_{t_{0}}^{(t)}|V(\tau)| d \tau$

$$
\begin{aligned}
& \frac{d s}{d t}=|V(t)| \\
& \frac{d \vec{r}}{d s}=\frac{d \vec{r}}{d t} \cdot\left(\frac{d t}{d s}=\frac{d \vec{r}}{d t} \cdot \frac{1}{d v(t) d t)^{\prime}=f(x)}=\vec{T}\right.
\end{aligned}
$$

Ex. $\vec{r}(t)=\cos t i+\sin t j+t k$ tr parameter with base
find \vec{T} taking $t_{0}=0$) $p\left(t_{0}\right)$.
using ($*$.
Sol. $\quad S(t)=\int_{0}^{t}|V(z)| d \tau$
Now, $\quad V(t)=\vec{r}^{\prime}(t)=-\sin t i+\cos t j+k$

$$
\begin{array}{r}
|\vec{V}(t)|=\sqrt{\sin ^{2} t+\cos ^{2} t+1}=\sqrt{2} \\
\therefore S(t)=\int_{0}^{t} \sqrt{2} d \tau=\sqrt{2} t \\
\Rightarrow \vec{t}=\frac{s}{\sqrt{2}} \\
\therefore \quad \vec{r}(t(s))=\cos \left(\frac{s}{\sqrt{2}}\right) i+\sin \left(\frac{s}{\sqrt{2}}\right) j+\frac{s}{\sqrt{2}} k \\
\therefore \vec{T}=\frac{d \vec{r}}{d s}=\frac{-1}{\sqrt{2}} \sin \left(\frac{s}{\sqrt{2}}\right) i+\frac{1}{\sqrt{2}} \cos \left(\frac{s}{\sqrt{2}}\right) j+\frac{1}{\sqrt{2}} k
\end{array}
$$

15. Arc length Find the length of the curve
sunday, July 04, 2021

$$
\begin{aligned}
& \quad \mathbf{r}(t)=(\sqrt{2} t) \mathbf{i}+(\sqrt{2} t) \mathbf{j}+\left(1-t^{2}\right) \mathbf{k} \\
& \times \quad \begin{array}{l}
x \\
y \\
y^{z} \\
\text { from } \\
\underbrace{0,0,1)}_{t=0} \text { to }
\end{array} \underbrace{\sqrt{2}, \sqrt{2}, 0)}_{t=1} .
\end{aligned} \quad 0 \leq t \leq 1
$$

$$
\begin{aligned}
& \underset{\vec{V}(t)}{S_{0}}=\frac{d \vec{r}}{d t}=\sqrt{2} i+\sqrt{2} j-2 t k \\
& |\vec{V}(t)|=\sqrt{2+2+4 t^{2}}=2 \sqrt{1+t^{2}} \\
& \therefore L=\int_{0}^{1}|V(t)| d t \\
& 8.3 \\
& \text { Triginometric } \\
& \text { Substitutiv } \\
& =2 \int_{0}^{1} \sqrt{1+t^{2}} d t \\
& \text { Firsty, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \int \sqrt{1+t^{2}} d t \quad\left\{\begin{array}{l}
\frac{t}{1}=\tan \theta, \frac{-\pi}{2}<\theta<\frac{\pi}{2} \\
d t=\sec ^{2} \theta d \theta
\end{array}\right. \\
& =\int \sqrt{1+\tan ^{2} \theta} \sec ^{2} \theta d \theta \\
& \left.=\int \sqrt{\sec ^{2} \theta} \sec ^{2} \theta d \theta\right\} \\
& =\int \sec ^{3} \theta d \theta \\
& u=\sec \theta \\
& \frac{\sqrt{1+t^{2}} / \theta \mid t}{1} \\
& \begin{array}{l}
d u=\sec \theta \tan \theta d \theta-\int v \\
v d \omega
\end{array} u \tan \theta \\
& \therefore \int \sec ^{3} \theta d \theta=u v-\int v d u \\
& =\sec \theta \tan \theta-\int \sec \theta \xrightarrow[\tan ^{2} \theta d \theta]{d \theta} \\
& =\sec \theta \tan \theta-\int\left(\sec ^{3} \theta-\sec \theta\right) d \theta
\end{aligned}
$$

63

$$
\begin{aligned}
\therefore & \int \sec ^{3} \theta d \theta=\sec \theta \tan \theta+\int \sec \theta d \theta \underbrace{-\int \sec ^{3} \theta d \theta} \\
& \left.2 \int \sec ^{3} \theta d \theta=\sec \theta \tan \theta+\ln \mid \sec \theta+\tan \theta\right)+c \\
\therefore & \int \sec ^{3} \theta d \theta=\frac{1}{2} \sec \theta \tan \theta+\frac{1}{2} \ln (\sec \theta+\tan \theta \mid \\
= & \left.\frac{1}{2} \sqrt{1+t^{2}} \cdot t+\frac{1}{2} \ln \left|\sqrt{1+t^{2}}+t\right|+\frac{\left.\sqrt{1+t^{2}}\right|_{\theta}}{1} \right\rvert\, t \\
\therefore L= & 2 \int_{0}^{1} \sqrt{1+t^{2}} d t \\
= & \left.\left(t \sqrt{1+t^{2}}+\ln \left|\sqrt{1+t^{2}}+t\right|\right)\right]_{0}^{1} \\
= & {[\sqrt{2}+\ln (\sqrt{2}+1)]-[0] } \\
= & \sqrt{2}+\ln (\sqrt{2}+1) .
\end{aligned}
$$

Curvature of a Plane Curve

$$
\vec{T}=\frac{\vec{V}}{|\vec{V}|}
$$

FIGURE 13.17 As P moves along the curve in the direction of increasing arc length, the unit tangent vector turns. The value of $|d \mathbf{T} / d s|$ at P is called the curvature of the curve at P.

DEFINITION If \mathbf{T} is the unit vector of a smooth curve, the curvature function of the curve is

$$
\alpha \kappa\left|\frac{d \mathbf{T}}{d s}\right| . \quad>\quad \begin{aligned}
& \vec{J}=\frac{\vec{v}}{|\vec{v}|} \\
& s=\int_{0}^{t}|u| .
\end{aligned}
$$

If $|d \mathrm{~T} / d s|$ is large, T turns sharply as the particle passes through P, and the curvature at P is large. If $|d \mathbf{T} / d s|$ is close to zero, \mathbf{T} turns more slowly and the curvature at P is smaller.

Formula for Calculating Curvature
If $\mathbf{r}(t)$ is a smooth curve, then the curvature is

$$
\kappa=\frac{1}{|\mathbf{v}|}\left|\frac{d \mathbf{T}}{d t}\right|,
$$

where $\mathbf{T}=\mathbf{v} /|\mathbf{v}|$ is the unit tangent vector.
Greek letter κ ("kappa").

$$
R=\left|\frac{d T}{\partial s}\right|=\left|\frac{\partial T}{\partial t}\right| \cdot\left|\frac{d t}{\partial s}\right| \rightarrow \frac{1}{|v|}
$$

Ex. Show that the curvature of a circle with radius a is $K=\frac{1}{a}=\frac{1}{\text { radius }}$

Proof.

$$
\begin{aligned}
& x^{2}+y^{2}=a^{2} \\
& \left.\left|K=\frac{1}{|v|}\right| \frac{\partial T}{\partial t} \right\rvert\, \\
& x=a \cos t, y=a \sin t \\
& \vec{r}(t)=(a \cos t) i+(a \sin t) j \\
& \vec{V}=\frac{\partial \vec{r}}{\partial t}=(-a \sin t) i+(a \cos t) j \\
& |\vec{V}|=\sqrt{(-a \sin t)^{2}+(a \cos t)^{2}}=\sqrt{a^{2}(1)} \\
& =a, a>0 \\
& \vec{T}=\frac{\vec{V}}{|V|}=\frac{1}{a}(-a \sin t i+a \cos t j) \\
& \vec{T}=(-\sin t) i+(\cos t) j \\
& \frac{d \vec{T}}{d t}=(-\cos t) i-(\sin t) j \\
& \left|\frac{d \vec{l}}{d t}\right|=\sqrt{\cos ^{2} t+\sin ^{2} t}=1 \\
& \begin{aligned}
\therefore K=\frac{1}{|\vec{V}|}\left|\frac{d \vec{T}}{d t}\right|=\frac{1}{a} \cdot 1 & =\frac{1}{a} \\
& =\frac{1}{\text { radius }}
\end{aligned}
\end{aligned}
$$

ex. $x^{2}+y^{2}=9 \Rightarrow R=\frac{1}{3}$

Ex. Shim that the Curvature of a line is Zero. constant

Sol.

$$
\begin{aligned}
& \vec{r}(t)=P_{0}+t \vec{p} \\
& \vec{V}=\frac{d \vec{r}}{d t}=\vec{p} \\
& \quad|\vec{v}|=|\vec{p}|
\end{aligned}
$$

$$
\therefore \vec{T}=\frac{\vec{P}}{|\vec{P}|} \text { constant vector }
$$

$$
\begin{aligned}
\frac{d \vec{T}}{d t}=\overrightarrow{0} \Rightarrow R & =\frac{1}{|\vec{v}|}\left|\frac{d \vec{T}}{d t}\right| \\
& =\frac{1}{|\vec{v}|}|\vec{o}|=0 .
\end{aligned}
$$

DEFINITION At a point where $\kappa \neq 0$, the principal unit normal vector for
a smooth curve in the plane is

$$
\begin{aligned}
& \Rightarrow \vec{N}=\frac{\frac{d \vec{T}}{d t}}{\left|\frac{\partial \vec{T}}{d t}\right|}
\end{aligned}
$$

If $\mathbf{r}(t)$ is a smooth curve, then the principal unit normal is

$$
\mathbf{N}=\frac{d \mathbf{T} / d t}{|d \mathbf{T} / d t|},
$$

where $\mathbf{T}=\mathbf{v} /|\mathbf{v}|$ is the unit tangent vector.
EXAMPLE 3 Find $\mathbf{T} \mathbf{T}$ and κ

$$
\mathbf{r}(t)=(\cos 2 t) \mathbf{i}+(\sin 2 t) \mathbf{j} .
$$

Sol. $\vec{V}=\frac{\partial \vec{r}}{\partial t}=(-2 \sin 2 t) i+(2 \cos 2 t) j$

$$
\begin{aligned}
& |\vec{v}|=\sqrt{4 \sin ^{2}(2 t)+4 \cos ^{2}(2 t)}=2 \\
& \vec{T}=\frac{1}{|\vec{V}|} \vec{V}=\frac{1}{2}(-2 \sin 2 t i+2 \cos 2 t j) \\
& \vec{T}=-\sin (2 t) i+\cos (2 t) j \\
& \frac{d \vec{T}}{d t}=(-2 \cos 2 t) i-(2 \sin 2 t) j \\
& \left|\frac{d \vec{T}}{d t}\right|=\sqrt{4 \cos ^{2} 2 t+4 \sin ^{2} 2 t}=2 \\
& \vec{N}=\frac{1}{\left|\frac{d \vec{T}}{\partial t}\right|} \frac{d \vec{T}}{d t}=\frac{1}{2}[-2 \cos 2 t i-2 \sin 2 t j] \\
& =(-\cos 2 t) i-(\sin 2 t) j \\
& K=\frac{1}{|\vec{v}|}\left|\frac{\partial \vec{T}}{\partial t}\right|=\frac{1}{2}(2)=1 .
\end{aligned}
$$

(i) $\quad K, \vec{T}$ and \vec{N}

EXAMPLE 5 Find the curvature for the helix (Figure 13.22)

$$
\mathbf{r}(t)=(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}+b t \mathbf{k}, \quad a, b \geq 0, \quad a^{2}+b^{2} \neq 0 .
$$

Sol. $\vec{V}(t)=\frac{d \vec{r}}{d t}=(-a \sin t) i+(a \cos t) j+b k$

$$
\begin{aligned}
& |\vec{V}|=\sqrt{a^{2} \sin ^{2} t+a^{2} \cos ^{2} t+b^{2}} \\
& =\sqrt{a^{2}+b^{2}} \\
& \vec{T}=\frac{\vec{V}}{|\vec{V}|}=\frac{1}{\sqrt{a^{2}+b^{2}}}(-a \sin t i+a \cos t j+b k) \\
& \vec{T}=\frac{-a \sin t}{\sqrt{a^{2}+b^{2}}} i+\frac{a \cos t}{\sqrt{a^{2}+b^{2}}} j+\frac{b}{\sqrt{a^{2}+b^{2}}} k \\
& \frac{d \vec{T}}{d t}=-\frac{a \cos t}{\sqrt{a^{2}+b^{2}}} i-\frac{a \sin t}{\sqrt{a^{2}+b^{2}}} j \\
& \left|\frac{\partial \vec{T}}{\partial t}\right|=\sqrt{\frac{a^{2} \cos ^{2} t}{a^{2}+b^{2}}+\frac{a^{2} \sin ^{2} t}{a^{2}+b^{2}}}=\frac{a}{\sqrt{a^{2}+b^{2}}} \\
& \vec{N}=\frac{d \vec{T}}{d t} /\left|\frac{d \vec{T}}{d t}\right|=(-\cos t) i-(\sin t) j . \\
& \left|R=\frac{1}{|V|}\right| \frac{d T}{d t} \left\lvert\,=\frac{1}{\sqrt{a^{2}+b^{2}}} \frac{a}{\sqrt{a^{2}+b^{2}}}=\frac{a}{a^{2}+b^{2}}\right. \\
& \mathscr{L}(a, b)=\frac{a}{a^{2}+b^{2}}
\end{aligned}
$$

(ii) What's the largest value of I can have for a given value b?

Sol. $K(a)=\frac{a}{a^{2}+b^{2}}, b$ constant.

$$
\begin{aligned}
& \mathcal{K}^{\prime}(a)=\frac{\left(a^{2}+b^{2}\right)(1)-a(2 a)}{\left(a^{2}+b^{2}\right)^{2}}=\frac{b^{2}-a^{2}}{\left(a^{2}+b^{2}\right)^{2}} \\
& K^{\prime}(a)=0 \Rightarrow b^{2}-a^{2}=0 \\
& \rightarrow a= \pm b \\
& \rightarrow-a+++\rightarrow \rightarrow \mathcal{K}^{\prime}(a)
\end{aligned}
$$

\therefore The max. value of K occurs of $a=b$
$\max . K=K(b)=\frac{b}{b^{2}+b^{2}}=\frac{x}{2 b^{2}}$

$$
=\frac{1}{2 b}
$$

Circle of Curvature for Plane Curves

The circle of curvature or osculating circle at a point P on a plane curve where $\kappa \neq 0$ is the circle in the plane of the curve that

1. is tangent to the curve at P (has the same tangent line the curve has)
2. has the same curvature the curve has at P
3. lies toward the concave or inner side of the curve (as in Figure 13.20).

The radius of curvature of the curve at P is the radius of the circle of curvature, which, according to Example 2, is

$$
\text { Radius of curvature }=\rho=\frac{1}{\kappa} .
$$

To find ρ, we find κ and take the reciprocal. The center of curvature of the curve at P is the center of the circle of curvature.

FIGURE 13.20 The osculating circle at $P(x, y)$ lies toward the inner side of the curve.

EXAMPLE 4 Find and graph the osculating circle of the parabola $y=x^{2}$ at the origin.

$$
\begin{aligned}
& \text { Sol. } \begin{array}{l}
y=x^{2} \\
x=t, \quad y=t^{2} \\
\vec{r}(t)=t i+t^{2} j
\end{array} \quad . \quad l
\end{aligned}
$$

$$
\begin{aligned}
& \vec{r}=t i+t^{2} j . \\
& \left(t, t^{2}\right) \\
& 71 \\
& \text { 9:13 PM } \\
& \vec{V}=\frac{d \vec{r}}{d t}=i+2 t j \\
& (x, y) \\
& =(0,0) \quad t=0 \\
& |\vec{v}|=\sqrt{1+4 t^{2}} \\
& \vec{T}=\frac{\vec{V}}{|\vec{V}|}=\frac{1}{\sqrt{1+4 t^{2}}} i+\frac{2 t}{\sqrt{1+4 t^{2}}} j \\
& K(0)=\frac{1}{|\vec{V}(0)|}\left|\frac{d \vec{T}}{d t}(0)\right| \\
& \vec{T}=\left(1+4 t^{2}\right)^{\frac{-1}{2}} i+2 t\left(1+4 t^{2}\right)^{-\frac{1}{2}} j \\
& \frac{d \vec{T}}{d t}=\left[-\frac{1}{2}\left(1+4 t^{2}\right)^{-3 / 2}(8 t)\right] i+\left[2\left(1+4 t^{2}\right)^{-\frac{1}{2}}\right. \\
& \left.+2 t\left(-\frac{1}{2}\right)\left(1+4 t^{2}\right)^{-3 / 2} .8 t\right] j \\
& \frac{\partial \vec{T}}{\partial t}(0)=2 j \Rightarrow\left|\frac{d \vec{T}}{d t}(0)\right|=2 \\
& |\vec{V}(0)|=\sqrt{1+4(0)^{2}}=1 \\
& \therefore K=\frac{1}{|\vec{V}(0)|}\left|\frac{d \vec{T}}{d t}(0)\right|=\frac{1}{1} \cdot 2=2 \\
& \therefore \text { radirs of curvature }=\rho=\frac{1}{R}=\frac{1}{2} \text {. } \\
& \vec{T}(0)=i \\
& \vec{N}(0)=j \\
& \text { radius }=\frac{1}{2} \\
& \text { center }\left(0, \frac{1}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { of curvature is } \\
& (x-0)^{2}+\left(y-\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2} \\
& x^{2}+\left(y-\frac{1}{2}\right)^{2}=\frac{1}{4}
\end{aligned}
$$

FIGURE 13.21 The osculating circle for the parabola $y=x^{2}$ at the origin (Example 4).
13.5 Tangential and Normal components) or Acceleration)

The TNB Frame

FIGURE 13.23 The TNB frame of mutually orthogonal unit vectors traveling along a curve in space.

$$
\begin{aligned}
& \text { Reek. } \quad \vec{B} \perp \vec{N} \text { and } \vec{B} \perp \vec{T} \\
& |\vec{B}|=|\vec{T}||\vec{N}||\sin \theta| \\
& =(1)(1)\left|\sin 90^{\circ}\right|=1 \\
& \therefore \vec{B} \text { is unit vector. }
\end{aligned}
$$

Tangential and Normal Components of Acceleration

$$
\begin{aligned}
& \vec{a}=\frac{\partial \vec{v}}{\partial t}=\frac{f}{\partial t}\left(\frac{\vec{V}}{|\vec{v}|}|\vec{v}|\right) \\
& =\frac{d}{d t}\left(\vec{T} \cdot \frac{\partial s}{d t}\right)=\frac{d T}{d t} \frac{d s}{d t}+T \frac{d^{2} s}{d t^{2}} \\
& =\frac{d T}{d s}\left(\frac{d s}{d t}\right)^{2}+\left(\frac{d}{\partial t}|\vec{v}|\right) \vec{T} \\
& =\frac{d T}{d s}|\vec{V}|^{2}+\left(\frac{f}{d t}|\vec{v}|\right) \vec{T}
\end{aligned}
$$

74

$$
\vec{a}=\underbrace{\left.|\hbar| v\right|^{2}}_{a_{N}} \vec{N}+\underbrace{\left(\frac{d}{d t}|\vec{v}|\right)}_{a_{T}} \vec{T}
$$

DEFINITION
If the acceleration vector is written as

$$
\mathbf{a}=a_{\mathrm{T}} \mathbf{T}+a_{\mathrm{N}} \mathbf{N}
$$

then

$$
a_{\mathrm{T}}=\frac{d^{2} s}{d t^{2}}=\frac{d}{d t}|\mathbf{v}| \quad \text { and } \quad a_{\mathrm{N}}=\kappa\left(\frac{d s}{d t}\right)^{2}=\kappa|\mathbf{v}|^{2}
$$

are the tangential and normal scalar components of acceleration.

FIGURE 13.25 The tangential and normal components of acceleration. The acceleration a always lies in the plane of \mathbf{T} and \mathbf{N}, orthogonal to \mathbf{B}.

Rmk.© \vec{a} always
lies in the plane of \vec{T} and $\vec{N} \vec{B}$
(2) A_{T} measures the change in speed.
a_{N} measures the rate of change of the direction of \vec{v}.

$$
R_{m}|\cdot| \cdot \mid a_{2}^{2} \vec{a} \cdot \vec{a}=\left(a_{T} \vec{T}+a_{N} \vec{N}\right) \cdot\left(a_{T} \vec{T}+a_{N} \vec{N}\right)
$$

$$
\therefore|\vec{a}|^{2}=a_{T}^{2}+a_{N}^{2} \Rightarrow a_{N}=\sqrt{|\vec{a}|^{2}-a_{T}^{2}}
$$

EXAMPLE 1 Without finding \mathbf{T} and \mathbf{N}, write the acceleration of the motion

$$
\mathbf{r}(t)=(\cos t+t \sin t) \mathbf{i}+(\sin t-t \cos t) \mathbf{j}
$$

in the form $\mathbf{a}=a_{\mathrm{T}} \mathbf{T}+a_{\mathrm{N}} \mathbf{N}$.

$$
\text { Sol. } \begin{aligned}
\vec{V}= & \frac{d \vec{r}}{d t}
\end{aligned}=(-\sin t+\sin t+t \cos t) i .
$$

$$
\begin{aligned}
& a_{T}=\frac{d}{d t}|v|=\frac{d}{d t}(t)=1 \\
& \vec{a}=\frac{d^{2} \vec{r}}{d t^{2}}=\frac{d \vec{V}}{d t}
\end{aligned}
$$

$$
=(\cos t-t \sin t) i+(\sin t+t \cos t) j
$$

$$
\begin{aligned}
|\vec{a}|^{2}= & (\cos t-t \sin t)^{2}+(\sin t+t \cos t)^{2} \\
= & \cos ^{2} t-2 t \cos t \sin t+t^{2} \sin ^{2} t+\sin ^{2} t \\
& +2 t \sin t \cos t+t^{2} \cos ^{2} t
\end{aligned}
$$

$$
|\vec{a}|^{2}=1+t^{2}
$$

$$
a_{N}=\sqrt{|\vec{a}|^{2}-a_{T}^{2}}=\sqrt{\left(t^{2}+1\right)-(1)^{2}}
$$

$$
=\sqrt{t^{2}}=|t|=t
$$

$$
\vec{a}=a_{T} \vec{T}+a_{N} \vec{N}=1 \cdot \vec{T}+t \vec{N}=\vec{T}+t \vec{N}
$$

Torsion ($\tau)^{\text {76 tau }}$

$$
\begin{aligned}
B & =T \times N \\
\frac{d B}{d s} & =\frac{d T}{d s} \times N+T \times \frac{d N}{d s}\left\{N=\frac{1}{k}+\frac{d T}{d s}\right\} \\
& \left.=\frac{d T}{d s} \times\left(\frac{\Gamma}{k}\right) \frac{d T}{d s}\right)+T \times \frac{d N}{d s} \\
& =\frac{1}{k}\left(\frac{d T}{d s} \times \frac{d T}{d s}\right)+T \times \frac{d N}{d s} \\
\frac{d B}{d s} & =T \times \frac{d N}{d s} \quad \begin{array}{l}
r \cdot \frac{d \vec{r}}{\partial s}=0 \\
|\vec{r}|=\text { cantal }
\end{array}
\end{aligned}
$$

Now, We know $B \perp \frac{d B}{d S}($ since $|\vec{B}|=1)$

$$
\begin{aligned}
& \Rightarrow \frac{\partial B}{d s} \| N \Rightarrow \frac{d B}{d s}=(-2) N \\
& \frac{d B}{d s} \cdot N=-\tau(N \cdot N) \cdot|N|^{2}=1 \\
& \therefore \tau=-\frac{d \vec{B}}{d s} \cdot \vec{N} \xrightarrow{|\vec{v}|} \\
&=\left(-\frac{d B}{d t}\left(\frac{d t}{d s}\right) \cdot \vec{N}\right. \\
& z=-\frac{1}{|\vec{V}|}\left(\frac{d \vec{B}}{d t} \cdot \vec{N}\right)
\end{aligned}
$$

torsion. where $\vec{B}=\vec{T} \times \vec{N}$.

$$
\begin{aligned}
& \vec{r}=x i+y j+z k \\
& \dot{x}=\frac{d x}{d t}, \quad \dot{x}=\frac{d^{2} x}{d t^{2}}, \quad \ddot{x}=\frac{d^{3} x}{d t^{3}}
\end{aligned}
$$

Q8)
8. $\mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}+t \mathbf{k}, \quad t=0$

Find $\tau(0)$.
Sol.

$$
\begin{aligned}
& \vec{V}=\vec{r}^{\prime}(t)=(-\sin t) i+(\cos t) j+k \\
& \vec{a}=\frac{d \vec{v}}{d t}=(-\cos t) i-\sin t j \\
& \vec{V}(0)=j+k, \quad \vec{a}(0)=-i \\
& \vec{V}(0) \times \vec{a}(0)=\left|\begin{array}{ccc}
i & \oplus & \oplus \\
k \\
0 & 1 & 1 \\
-1 & 0 & 0
\end{array}\right| \\
& =0 i-(0+1) j+(0+1) k \\
& =-j+k \\
& |\vec{V}(0) \times \vec{a}(0)|=\sqrt{1+1}=\sqrt{2} \text {. } \\
& \left|\begin{array}{lll}
\dot{x} & \dot{y} & \dot{z} \\
\ddot{x} & \dot{y} & \ddot{z} \\
\ddot{x} & \ddot{y} & \ddot{z}
\end{array}\right|=\left|\begin{array}{ccc}
-\sin t & \cos t & 1 \\
-\cos t & -\sin t & 0 \\
\sin t & -\cos t & 0
\end{array}\right|=\left|\begin{array}{ccc}
0 & 1 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right| \\
& =1
\end{aligned}
$$

Tangential and normal scalar components of acceleration:

$$
\begin{aligned}
\mathbf{a} & =a_{\mathrm{T}} \mathbf{T}+a_{\mathrm{N}} \mathbf{N} \\
a_{\mathrm{T}} & =\frac{d}{d t}|\mathbf{v}| \\
a_{\mathrm{N}} & =\kappa|\mathbf{v}|^{2}=\sqrt{|\mathbf{a}|^{2}-a_{\mathrm{T}}^{2}}
\end{aligned}
$$

FIGURE 13.28 The names of the three planes determined by \mathbf{T}, \mathbf{N}, and \mathbf{B}.
$13.5+12.5$
In Exercises 7 and 8, find $\mathbf{r}, \mathbf{T}, \mathbf{N}$, and \mathbf{B} at the given value of t. Then find equations for the osculating, normal, and rectifying planes at that value of t.

$$
\begin{aligned}
& \text { 8. } \mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}+t \mathbf{k}, t=0 \\
& p=? ? \quad \text { At } t=0, \vec{r}(0)=\cos 0 i+\sin 0 j+o k \\
& =i \\
& \therefore P(1,0,0) \text {. } \\
& \vec{V}=\frac{d \vec{r}}{\partial t}=(-\sin t) i+(\cos t) j+k \\
& |\vec{v}|=\sqrt{\sin ^{2} t+\cos ^{2} t+1}=\sqrt{2} \text {. } \\
& \vec{T}=\frac{\vec{V}}{|\vec{V}|}=-\frac{\sin t}{\sqrt{2}} i+\frac{\cos t}{\sqrt{2}} j+\frac{1}{\sqrt{2}} k \\
& t=0, \vec{T}(0)=\frac{1}{\sqrt{2}} j+\frac{1}{\sqrt{2}} k \quad p(1,0,0) \\
& \text { normal plane } 0(x-1)+\frac{1}{\sqrt{2}}(y-0)+\frac{1}{\sqrt{2}}(z-1)=0 \\
& \Rightarrow y+z=0
\end{aligned}
$$

$$
\begin{aligned}
& \vec{N}=\frac{\partial \vec{T}}{\partial t} /\left|\frac{d \vec{T}}{d t}\right| . \\
& \vec{T}=\frac{1}{\sqrt{2}}(-\sin t i+\cos t j+k) \\
& \frac{\partial \vec{T}}{\partial t}=\frac{1}{\sqrt{2}}(-\cos t i-\sin t j) \\
& |\alpha \vec{J}| \\
& =|\alpha||\vec{v}| \quad\left|\frac{d T}{d t}\right|=\left|\frac{1}{\sqrt{2}}\right| \sqrt{\cos ^{2} t+\sin ^{2} t}=\frac{1}{\sqrt{2}} \\
& \left.\vec{N}=\frac{\partial T}{\partial t}| | \frac{d T}{\partial t} \right\rvert\,=-\cos t i-\sin t j \\
& \vec{N}(0)=-i \quad, P(1,0,0)
\end{aligned}
$$

Rectifying plane $-1(x-1)+0(y-0)+0(z-0)=0$

$$
\begin{array}{r}
\Rightarrow \overrightarrow{B=1} \\
\vec{B}(0)=\vec{T}(0) \times \vec{N}(0)=\left|\begin{array}{ccc}
\frac{+}{i} & G_{j} & \frac{+}{k} \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-1 & 0 & 0
\end{array}\right| \\
\text { Osculating plane } \quad \vec{B}(0)=-\frac{1}{\sqrt{2}} j+\frac{1}{\sqrt{2}} k \\
p(1,0,0)
\end{array}
$$

$$
0(x-1)-\frac{1}{\sqrt{2}}(y-0)+\frac{1}{\sqrt{2}}(z-0)=0
$$

or $y=z$
the End of ch 13.

DEFINITIONS Suppose D is a set of n-tuples of real numbers $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. A real-valued function f on D is a rule that assigns a unique (single) real number

$$
w=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

to each element in D. The set D is the function's domain. The set of w-values taken on by f is the function's range. The symbol is the dependent variable of f, and f is said to be a function of the n independent variables x_{1} to x_{n}. We also call the x_{j} 's the function's input variables and call w the function's output variable.

$$
y=f(x)
$$

Remarks. (1) If $f i>$ a function of two independent
variables $z=f(x, y)$, then we picture the domain of f as aregion in the $x y$-plane.

FIGURE 14.1 An arrow diagram for the function $z=f(x, y)$.

> (2) If f is a function of three variables $w=f(x, y, z)$, we picture the domain of f as a region in space.
> Ex. If $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$. Find $f(x, y, z, 4)$
> sol. $f(3,0,4)=\sqrt{3^{2}+0^{2}+4^{2}}=\sqrt{9+16}=\sqrt{25}=5$.

Example. (a) Find and sketch the function's
domain
(b) Find the function's range.
(1)

$$
\begin{aligned}
& z=f(x, y)=\sqrt{y-x^{2}} \\
& D_{f}=\left\{(x, y): y-x^{2} \geqslant 0\right\}=\left\{(x, y): y \geqslant x^{2}\right\} \\
& \text { unbounded } \\
& \text { closed } \\
& 4 \geqslant 0^{2} \\
& R_{f}=[0, \infty) \\
& y-x^{2} \geqslant 0 \\
& z=\sqrt{y-x^{2}} \geqslant 0 \Rightarrow z \geqslant 0
\end{aligned}
$$

$$
\begin{aligned}
& \left.(2)_{z=f} f(x, y)=\frac{1}{x y}\right)=z \\
& D_{f}=\{(x, y): \quad x \neq 0 \text { and } y \neq 0\} . \\
& \begin{aligned}
\text { unbounded open. } & \text { ar }
\end{aligned} \\
& R_{f}=(-\infty, 0) \cup(0, \infty) \\
& =\mathbb{R} \backslash\{0\}
\end{aligned}
$$

$$
\begin{gathered}
D_{f}=\left\{(x, y): 9-x^{2}-y^{2} \geqslant 0\right\} \\
=\left\{(x, y): x^{2}+y^{2} \leq 9\right\} \\
R_{f}: 0 \leq x^{2}+y^{2} \leq 9 \\
\\
\quad-9 \leq-x^{2}-y^{2} \leq 0 \\
+9 \\
\\
\quad 0 \leq 9-x^{2}-y^{2} \leq 9 \\
0 \leq \sqrt{9-x^{2}-y^{2}} \leq 3 \\
\\
\quad 0 \leq \sqrt{9-x^{2}-y^{2}} \\
\\
0 \leq z \leq 3
\end{gathered}
$$

84

$$
-1 \leq x \leq 1
$$

Sunday, July 04, 2021
(4) $f(x, y)=4 \sin ^{-1}(y-2 x)$.

$$
D_{f}=\{(x, y):-1 \leq y-2 x \leq 1\}
$$

$$
=\{(x, y): \quad 2 x-1 \leq y \leq 2 x+1\}
$$

$$
\begin{aligned}
& y=2 x-1 \\
& x=0 \Rightarrow y=-1 \\
& y=0 \Rightarrow 2 x-1=0 \\
& x=\frac{1}{2}
\end{aligned}
$$

Rarge:

$$
\begin{aligned}
& -\frac{\pi}{2} \leq \sin ^{-1}(y-2 x) \leq \frac{\pi}{2} \\
& -\frac{4 \pi}{2} \leq \frac{4 \sin ^{-1}(y-2 x)}{z} \leq \frac{4 \pi}{2} \\
& -2 \pi \leq z \leq 2 \pi
\end{aligned}
$$

$$
\therefore R_{f}=[-2 \pi, 2 \pi] .
$$

$$
\begin{aligned}
& \text { (5) } z=f(x, y)=e^{-x^{2}-y^{2}}=\frac{1}{e^{x^{2}+y^{2}}}>0 \\
& D_{f}=\text { Entire plane (clopen (closed and open) } \\
& R_{f}=(0,1] \quad x^{2}+y^{2} \geqslant 0 \Rightarrow 0<e^{-x^{2}-y^{2}} \leq e^{0}=1 \\
& 0<z \leq 1
\end{aligned}
$$

(6) $z=f(x, y)=9-x^{2}-y^{2}=9-\left(x^{2}+y^{2}\right)$
$D_{f}=$ Entire plane.

$$
\begin{aligned}
& z=9-(\underbrace{\geqslant 0}_{x^{2}+y^{2}} \leq 9 \\
& x^{2}+y^{2} \geqslant 0 \Rightarrow 9-x^{2}-y^{2} \leq 0 \\
& \\
& -\infty<z \leq 9
\end{aligned}
$$

$$
\therefore R_{f}=(-\infty, 9]
$$

(7) $\omega=f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$

$$
D_{f}=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \geqslant 0\right\}
$$

= Entire space.

$$
R_{f}=[0, \infty) .
$$

(8) ${ }^{\omega}=f(x, y, z)=\frac{1}{x^{2}+y^{2}+z^{2}}$

$$
\begin{aligned}
D_{f} & =\{(x, y, z): \quad(x, y, z) \neq(0,0,0)\} \\
& =\text { Entire spuce } \backslash\{(0,0,0)\}
\end{aligned}
$$

$$
R_{f}=(0, \infty)
$$

(9) $\omega=x y \ln z, R_{\omega}=(-\infty, \infty)$

$$
D_{\omega}=\{(x, y, z): z>0\}=\text { Half-spac. }
$$

DEFINITIONS A point $\left(x_{0}, y_{0}\right)$ in a region (set) R in the $x y$-plane is an interior point of R if it is the center of a disk of positive radius that lies entirely in R (Figure 14.2). A point $\left(x_{0}, y_{0}\right)$ is a boundary point of R if every disk centered at $\left(x_{0}, y_{0}\right)$ contains points that lie outside of R as well as points that lie in R. (The boundary point itself need not belong to R.)

The interior points of a region, as a set, make up the interior of the region. The region's boundary points make up its boundary. A region is open if it consists entirely of interior points. A region is closed if it contains all its boundary

FIGURE 14.3 Interior points and boundary points of the unit disk in the plane.

DEFINITIONS A region in the plane is bounded if it lies inside a disk of fixed radius. A region is unbounded if it is not bounded.

Ex. $f(x, y)=\sqrt{y-x^{2}} \quad f$ find and decrite Dg.

$$
\begin{aligned}
& \text { Pf }=\left\{(x, y): y \geqslant x^{2}\right\} \quad\left|\frac{D_{f}}{D_{f}}\right|_{x} \\
& \text { Closed, unbounded. }
\end{aligned}
$$

Interior points $=\left\{(x, y): y>x^{2}\right\}$.

$$
\text { Boundary points }=\left\{(x, y): y=x^{2}\right\}=\left\{\begin{array}{c}
\left(x, x^{2}\right) ; \\
x \in \mathbb{R}\}
\end{array}\right.
$$

Graphs, Level Curves, and Contours of Functions of Two Variables
DEFINITIONS The set of points in the plane where a function $f(x, y)$ has a constant value $f(x, y)=c$ is called a level curve of f. The set of all points $\left(x^{\prime}, \breve{y}, f(x, y)\right)$ in space, for (x, y) in the domain of f, is called the graph of f. The graph of f is also called the surface $z=f(x, y)$.
ex. Describe the level curse of

$$
z=f(x, y)=100-x^{2}-y^{2}
$$

Sol. $f(x, y)=C$ "constant"

$$
\begin{gathered}
100-x^{2}-y^{2}=c \\
x^{2}+y^{2}=100-c \\
C=100 \Rightarrow x^{2}+y^{2}=0 \Rightarrow(x, y)=(0,0) \text { point }
\end{gathered}
$$

$100-c>0 \quad(i .0, c<100)$ lesed curves are circtes. $C>100$ No graph

contors

$$
z=100-x^{2}-y^{2}
$$

$$
\begin{gathered}
100-x^{2}-y^{2}=0 \\
x^{2} x y^{2}=100
\end{gathered}
$$

Plane $z=75$

lejel
ex. The contour of

$$
z=f(x, y)=100-x^{2}-y^{2}, z=75
$$

Sol. $100-x^{2}-y^{2}=75 \Rightarrow x^{2}+y^{2}=25$
\therefore Contours is a circe in the plane $z=75$.

Ex. Find an eq. of the level Curve of $f(x, y)=4 \ln \left(3-2 x^{2}-y^{2}\right)$ passing through $(1,0)$.

Sol.

$$
\begin{gathered}
f(x, y)=c \Rightarrow f(x, y)=f(1,0) \\
f(1,0)=c \Rightarrow \ln \left(3-2 x^{2}-y^{2}\right)=4 \ln (3-2) \\
\Rightarrow) \\
\ln \left(3-2 x^{2}-y^{2}\right)=0 \\
3-2 x^{2}-y^{2}=e^{0}=1 \\
\Rightarrow 2 x^{2}+y^{2}=2 \Rightarrow x=0 \Rightarrow y= \pm \sqrt{2}
\end{gathered}
$$

sketch and identify. $y=0 \Rightarrow x= \pm 1$ e Lips

DEFINITION The set of points (x, y, z) in space where a function of three independent variables has a constant value $f(x, y, z)=c$ is called a level surface of f.

EXAMPLE 4 Describe the level surfaces of the function

$$
f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}
$$

Sol.

$$
\begin{gathered}
f(x, y, z)=c \\
=0=c>0 \\
\sqrt{x^{2}+y^{2}+z^{2}}=c, c>0 \\
x^{2}+y^{2}+z^{2}=c^{2}
\end{gathered}
$$

$$
\text { The level surfaces are spheres if } c>0
$$

$$
\text { re } \quad \text { re the origin if } C=0
$$

$$
\text { There is no graph if } c<0 \text {. }
$$

DEFINITIONS A point $\left(x_{0}, y_{0}, z_{0}\right)$ in a region R in space is an interior point of R if it is the center of a solid ball that lies entirely in R (Figure 14.9a). A point $\left(x_{0}, y_{0}, z_{0}\right)$ is a boundary point of R if every solid ball centered at $\left(x_{0}, y_{0}, z_{0}\right)$ contains points that lie outside of R as well as points that lie inside R (Figure 14.9 b). The interior of R is the set of interior points of R. The boundary of R is the set of boundary points of R.

A region is open if it consists entirely of interior points. A region is closed if it contains its entire boundary.
14.2

Limits and Continuity in Higher Dimensions

Limits for Functions of Two Variables
If the values of $f(x, y)$ lie arbitrarily close to a fixed real number L for all points (x, y) sufficiently close to a point $\left(x_{0}, y_{0}\right)$, we say that f approaches the limit L as (x, y) approaches $\left(x_{0}, y_{0}\right)$ and write

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L
$$

THEOREM 1—Properties of Limits of Functions of Two Variables
The following rules hold if L, M, and k are real numbers and

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L \quad \text { and } \quad \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} g(x, y)=M .
$$

1. Sum Rule:

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(f(x, y)+g(x, y))=L+M
$$

2. Difference Rule:
3. Constant Multiple Rule:

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(f(x, y)-g(x, y))=L-M \\
& \int_{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(k)(x, y)=k L \quad(\text { any number } k)
\end{aligned}
$$

4. Product Rule:

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(f(x, y) \cdot g(x, y))=L \cdot M
$$

5. Quotient Rule:

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{f(x, y)}{g(x, y)}=\frac{L}{M}, \quad M \neq 0
$$

6. Power Rule:
$\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}[f(x, y)]^{n}=L^{n}, n$ a positive integer
7. Root Rule:
$\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \sqrt[n]{f(x, y)}=\sqrt[n]{L}=L^{1 / n}$,
n a positive integer, and if n is even, we assume that $L>0$.

EXAMPLE 1
(a)

$$
\begin{aligned}
& \text { aMPLE } 1 \\
& \lim _{(x, y) \rightarrow(0,1)}(x, y) \\
& \frac{x-x y+3}{x^{2} y+5 x y-y^{3}}
\end{aligned}=\frac{0-0(1)+3}{0^{2}(1)+5(0)(1)-1^{3}}=\frac{3}{-1}=-3
$$

(b) $\lim _{(x, y) \rightarrow(3,-4)} \sqrt{x^{2}+y^{2}}=\sqrt{3^{2}+(-4)^{2}}=\sqrt{9+16}=\sqrt{25}=5$ exits

EXAMPLE 2 Find

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-x y}{\sqrt{x}-\sqrt{y}} \cdot \\
= & \lim _{(x, y) \rightarrow(0,0)} \frac{x(x-y)}{\sqrt{x}-\sqrt{y}} \cdot \frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}+\sqrt{y}} \\
= & \lim _{(x, y) \rightarrow(0,0)} \frac{x(x-y)(\sqrt{x}+\sqrt{y})}{x-y} \\
=\lim _{(x, y) \rightarrow(0,0)} x(\sqrt{x}+\sqrt{y})= & 0(0+0) \\
& =0 \\
& \text { exists. }
\end{aligned}
$$

Ex(3) $\lim _{(x, y) \rightarrow(2,-4)} \frac{y+4}{\underbrace{x^{2} y-x y}+\underbrace{4 x^{2}-4 x}}\left(\frac{0}{0}\right)$

$$
\begin{aligned}
& =\lim _{(x, y) \rightarrow(2,-4)} \frac{y+y}{x y(x-1)+4 x(x-1)} \\
& =\lim _{(x, y) \rightarrow(2,-4)} \frac{y+4}{x(x-1)(y+4)}=\frac{1}{2(2-1)}=\frac{1}{2}
\end{aligned}
$$

Exy.

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(0,0)} y^{2} \sin \left(\frac{1}{x}\right) \\
& -1 \leq \sin \left(\frac{1}{x}\right) \leq 1, \quad x \neq 0 \\
& -y^{2} \leq y^{2} \sin \left(\frac{1}{x}\right) \leq y^{2}, x \neq 0 \\
& f(x, y)
\end{aligned}
$$

$\operatorname{Since} \lim _{(x, y) \rightarrow(0,0)}-y^{2}=0$ and $\lim _{(x, y) \rightarrow(0,0)} y^{2}=0$
then by squeeze thm $\lim _{(x, y) \rightarrow(0,0)}\left(y^{2} \sin \frac{1}{x}\right)=0$
Ex5 $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}\left(\frac{0}{0}\right)$

$$
\begin{aligned}
& u=x^{2}+y^{2},(x, y) \rightarrow(0,0) \Rightarrow u \rightarrow 0 \\
= & \lim _{u \rightarrow 0} \frac{\sin (u)}{u}=L_{u \rightarrow 0} \frac{\text { Llopipital. }}{} \frac{\cos (u)}{1}=1
\end{aligned}
$$

Ex. $6 \lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}-x y^{2}}{x^{2}+y^{2}} \quad\left(\frac{0}{0}\right)$
polar coordinates $x=r \cos \theta$

$$
\begin{aligned}
y & =r \sin \theta \\
x^{2}+y^{2}=r^{2}, & (x, y) \rightarrow(0,0) \Rightarrow r \rightarrow 0
\end{aligned}
$$

Q67
Ex7

$$
\begin{aligned}
& =\lim _{(x, y) \rightarrow(0,0)} \operatorname{Ln}^{=0 \text { exists }}\left(\frac{3 x^{2}+3 y^{2}-x^{2} y^{2}}{x^{2}+y^{2}}\right) \\
& =\operatorname{Ln}\left(\lim _{r \rightarrow 0} \frac{3 r^{2}-r^{4} \cos ^{2} \theta \sin ^{2} \theta}{r^{2}}\right) \\
& =\operatorname{Ln}\left(\lim _{r \rightarrow 0}\left(3-r^{2} \cos ^{2} \theta \sin ^{2} \theta\right)\right) \\
& =\operatorname{Ln}(3-0)=\operatorname{Ln} 3 \text { exists }
\end{aligned}
$$

$Q 64$

$$
\begin{aligned}
& \text { Ex. } 8 \lim _{(x, y) \rightarrow(0,0)} \frac{2 x}{x^{2}+y^{2}+x}\left\{\begin{array}{l}
r^{2}=x^{2}+y^{2} \\
x=r \cos \theta \\
y=r \sin \theta \\
(x, y) \rightarrow(0,0) \Rightarrow r
\end{array}\right. \\
& =\lim _{r \rightarrow 0}\left(\frac{2 r \cos \theta}{r^{2}+r \cos \theta}\right) \\
& =\lim _{r \rightarrow 0} \frac{2 \cos \theta}{r+\cos \theta}=2 \text { if } \cos \theta \neq 0 \\
& \therefore \quad \operatorname{limit} \operatorname{DNE} \text { for } \cos \theta=0 .
\end{aligned}
$$

$$
\text { Exp. } \lim _{(x, y) \rightarrow(0,0)} \frac{4 x^{2} y^{2}}{x^{4}+y^{4}}
$$

$$
=\lim _{r \rightarrow 0} \frac{4 r^{2} \cos ^{2} \theta \cdot r^{2} \sin ^{2} \theta}{r^{4} \cos ^{4} \theta+r^{4} \sin ^{4} \theta}
$$

$$
=\lim _{r \rightarrow 0} \frac{4 \cos ^{2} \theta \sin ^{2} \theta}{\cos ^{4} \theta+\sin ^{4} \theta}
$$

$$
=\frac{4 \cos ^{2} \theta \sin ^{2} \theta}{\cos ^{4} \theta+\sin ^{4} \theta}-\operatorname{DNE}
$$

Since the limit varies for Varies.

Two-Path Test for Nonexistence of a Limit
If a function $f(x, y)$ has different limits along two different paths in the domain of f as (x, y) approaches $\left(x_{0}, y_{0}\right)$, then $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ does not exist.

EXAMPLE 6 Show that the function

$$
f(x, y)=\frac{2 x^{2} y}{x^{4}+y^{2}}
$$

(Figure 14.14) has no limit as (x, y) approaches $(0,0)$.
Sol. Along $y=x$
$-\lim _{(x, y) \rightarrow}$

$$
\begin{aligned}
& -\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2} y}{x^{4}+y^{2}}= \\
& x \operatorname{long} y=x^{2}
\end{aligned}
$$

$$
\begin{array}{r}
=\lim _{x \rightarrow 0} \frac{2 x^{3}}{x^{4}+x^{2}}=\lim _{x \rightarrow 0} \frac{2 x}{x^{2}+1} \\
=\frac{2}{1}=0
\end{array}
$$

$$
=\frac{\partial}{1}=0
$$

$$
\begin{aligned}
\text { Along } y=x^{2}, \lim _{(x, y) \rightarrow(0,0)} f(x, y) & =\lim _{x \rightarrow 0} \frac{2 x^{2} \cdot x^{2}}{x^{4}+\left(x^{2}\right)^{2}} \\
& =\lim _{x \rightarrow 0} 1=1=1
\end{aligned}
$$

By the Two-puth test, $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2} y}{x^{4}+y^{2}}$ DNE
Ex. \lim

$$
\begin{aligned}
A \operatorname{long} y=k x, x \neq 0 & =\lim _{x \rightarrow 0} \frac{2 k^{2}}{1+3 k^{3}} \\
& =\frac{2 k^{2}}{1+3 k^{3}}
\end{aligned}
$$

97
If $\left[\underline{k}=0, \quad \lim _{(x, y) \rightarrow(0,0)} f(x, y)=0\right.$

$$
\{k=1], \lim _{(x, y) \rightarrow(0,0)} f(x, y)=\frac{2}{4}=\frac{1}{2}
$$

$\therefore \lim _{(x, y) \rightarrow(0,0)} f(x, y)$ DNE by Two-puth
test.

Gx. $\lim _{(x, y) \rightarrow(1,-1)}\left(\frac{x y+1}{x^{2}-y^{2}}\right)$
Along $x=1$,

$\lim _{y \rightarrow-1} \frac{y+1}{1-y^{2}}\left(\frac{0}{0}\right)$

$(a, b) \quad x=a$ $y=b$

$$
=\lim _{y \rightarrow-1} \frac{1}{-2 y}=\frac{1}{-2(-1)}=\frac{1}{2}
$$

Along $y=-1, \lim _{x \rightarrow 1} \frac{-x+1}{x^{2}-1}=\lim _{x \rightarrow 1}-\frac{1}{2 x}=-\frac{1}{2}$
$\therefore \lim _{(x, y) \rightarrow(1,-1)} f(x, y)$ DNE by two - puth test.
Ex. $\lim _{\substack{(x, y) \rightarrow(1,1) \\ A(\log x=1}} \frac{x y^{2}-1}{y-1}=\lim _{y \rightarrow 1} \frac{y^{2}-1}{y-1}=\lim _{y \rightarrow 1} \frac{2 y}{1}=\sqrt{2}$
Along $y=x, \quad \lim _{(x, y) \rightarrow(1,1)} \frac{x y^{2}-1}{y y-1}=\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1} \div$

$$
\begin{aligned}
& x \rightarrow l_{x \rightarrow 1} \quad x-1 \\
& =\int_{x}=3
\end{aligned}
$$

$$
\therefore \text { Two-puth tet } \Rightarrow \lim _{(x, y) \rightarrow(x, 1)} \frac{x y^{2}-1}{y-1}
$$

Continuity

DEFINITION A function $f(x, y)$ is continuous at the point $\left(x_{0}, y_{0}\right)$ if

1. f is defined at $\left(x_{0}, y_{0}\right)$,
2. $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ exists,
3. $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=f\left(x_{0}, y_{0}\right)$.

A function is continuous if it is continuous at every point of its domain.

EXAMPLE 5 Show that

$$
f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

is continuous at every point except the origin (Figure 14.13).
(1) $f(0,0)=0$ defined
(2) $\lim _{\substack{(x \rightarrow \rightarrow) \rightarrow 0,0)}} \frac{2 x y}{x^{2}+y^{2}}=\lim _{x \rightarrow 0} \frac{2 x \cdot x}{x^{2}+x^{2}}=1$
Along $y=x$
Along $y=x^{2}, \lim _{x \rightarrow 0} \frac{2 x \cdot x^{2}}{x^{2}+x^{4}}=\lim _{x \rightarrow 0} \frac{2 x}{1+x^{2}}=0$

$$
\begin{aligned}
& \therefore \lim _{(x, y) \rightarrow \rightarrow(, y)} \frac{2 x y}{x^{2}+y^{2}} \text { DNE by Two-puth test } \\
& \quad \Rightarrow f(x, y)=\frac{2 x y}{x^{2}+y^{2}} \text { is discount. at }(0,0)
\end{aligned}
$$

Ex. where $f(x, y, z)=\frac{1}{4-\sqrt{x^{2}+y^{2}+z^{2}-9}}$
is continuous?

$$
\begin{aligned}
& \text { Sol. } \operatorname{Domain}(f)=\left\{\begin{array}{c}
(x, y, z): \quad x^{2}+y^{2}+z^{2}-9 \geqslant 0 \\
\text { and } 4-\sqrt{x^{2}+y^{2}+z^{2}-9} \neq 0
\end{array}\right\} \\
& =\left\{\begin{array}{c}
(x, 7, z): x^{2}+y^{2}+z^{2} \geqslant 9 \text { and } \\
\left.x^{2}+y^{2}+z^{2} \neq 25\right\}
\end{array}\right.
\end{aligned}
$$

$$
\therefore f_{13} \text { cut }-R=D_{5}
$$

Partial Derivatives of a Function of Two Variables $z=f(x, y)$

DEFINITION The partial derivative of $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ with respect to \boldsymbol{x} at the point $\left(x_{0}, y_{0}\right)$ is

$$
\left.\frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h:\left(y_{0}\right)-f\left(x_{0}, y_{0}\right)\right.}{h}
$$

provided the limit exists.

$$
f_{x} \text { " } \sin _{x} \text { " } f_{y} \text { "fsuby" }
$$

We use several notations for the partial derivative:

$$
=\frac{\partial f}{\partial y}
$$

$$
\begin{gathered}
\checkmark \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \text { or }\left.\xlongequal[f_{x}\left(x_{0}, y_{0}\right),]{ } \quad \frac{\partial z}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}, \quad \text { and } \quad f_{x}, \frac{\partial f}{\partial x}, z_{x}, \text { or } \frac{\partial z}{\partial x} . \\
f \text { subs }
\end{gathered}
$$

DEFINITION The partial derivative of $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ with respect to \boldsymbol{y} at the point $\left(x_{0}, y_{0}\right)$ is

$$
\left.\frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}=\left.\frac{d}{d y} f\left(x_{0}, y\right)\right|_{y=y_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

provided the limit exists.

The partial derivative with respect to y is denoted the same way as the partial derivafive with respect to x :

$$
\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right), \quad f_{y}\left(x_{0}, y_{0}\right), \quad \frac{\partial f}{\partial y}, \quad f_{y} .
$$

The slope of the curve $z=f\left(x, y_{0}\right)$ at the point $P\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ in the plane $y=y_{0}$ is the value of the partial derivative of f with respect to x at $\left(x_{0}, y_{0}\right)$. (In Figure 14.15 this slope is negative.) The tangent line to the curve at P is the line in the plane $y=y_{0}$ that passes through P with this slope. The partial derivative $\partial f / \partial x$ at $\left(x_{0}, y_{0}\right)$ gives the rate of change of f with respect to x when y is held fixed at the value y_{0}.

FIGURE 14.15 The intersection of the plane $y=y_{0}$ with the surface $z=f(x, y)$, viewed from above the first quadrant of the $x y$-plane.

The slope of the curve $z=f\left(x_{0}, y\right)$ at the point $P\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ in the vertical plane $x=x_{0}$ (Figure 14.16) is the partial derivative of f with respect to y at $\left(x_{0}, y_{0}\right)$. The tangent line to the curve at P is the line in the plane $x=x_{0}$ that passes through P with this slope. The partial derivative gives the rate of change of f with respect to y at $\left(x_{0}, y_{0}\right)$ when x is held fixed at the value x_{0}.

\qquad
Ex. If $f(x, y)=x^{2}+x y$. Find, Lydefn,

$$
\left.\frac{\partial f}{\partial x}\right|_{(4,2)} \text { and }\left.\frac{\partial f}{\partial y}\right|_{(4,2)}
$$

Sol.

$$
\begin{aligned}
\left.\frac{\partial f}{\partial x}\right|_{(4,2)} & =\lim _{h \rightarrow 0} \frac{f(4+h, 2)-f(4,2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(4+h)^{2}+(4+h)(2)-24}{h} \\
& =\lim _{h \rightarrow 0} \frac{16+8 h+h^{2}+8+2 h-24}{h} \\
& =\lim _{h \rightarrow 0} \frac{10 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(10+2 h)=10 .
\end{aligned}
$$

oR $f(x, y)=x^{2}+x y$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}= \frac{\partial}{\partial x}\left(x^{2}\right)+\frac{\partial}{\partial x}(x y) \\
&= 2 x+y \\
&\left.\frac{\partial f}{\partial x}\right|_{(4,2)}=2(4)+2=10
\end{aligned}
$$

$$
\begin{aligned}
& f=x^{2}+x y \\
&=\lim _{h \rightarrow 0} \frac{f(4,2+h)-f(4,2)}{h} \\
&=\lim _{h \rightarrow 0} \frac{16+4(2+h)-(16+8)}{h} \\
&=\lim _{h \rightarrow 0} \frac{16+8+4 h-24}{h} \\
&=\lim _{h \rightarrow 0} 4=4 \\
&=\frac{\partial}{\partial y}\left(x^{2}\right)+\frac{\partial}{\partial y}(x y) \\
& \frac{\partial f}{\partial y}=\frac{\partial x}{\partial y}=x \\
&\left.\frac{\partial f}{\partial y}\right|_{(4,2)}=4, \\
& \text { Qts) } \quad f(x, y)=\left\{\begin{array}{l}
\frac{\sin \left(x^{3}+y^{4}\right)}{x^{2}+y^{2}},(x, y) \neq(0,0) \\
0, \quad(x, y)=(0,0)
\end{array}\right. \\
&
\end{aligned}
$$

$f_{\text {ind }} f_{x}(0,0)$ and $f_{y}(1,0)$.
Sol.

$$
\begin{aligned}
f_{x}(0,0) & =\operatorname{Lim}_{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{\sin \left(h^{3}\right)}{h^{2}}-0}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin \left(h^{3}\right)}{h^{3}} \\
& =\lim _{h \rightarrow 0} \frac{\cos \left(h^{3}\right) \cdot 3 h^{2}}{3 \not h^{2}} \\
& =\cos 0=1 .
\end{aligned}
$$

$$
f_{y}(0,0) \quad(H \cdot w)
$$

EXAMPLE 1 Find the values of $\partial f / \partial x$ and $\partial f / \partial y$ at the point $(4,-5)$ if

$$
f(x, y)=\left(x^{2}\right)+3 x y+y-1 .
$$

Sol.

$$
\begin{aligned}
& f_{x}=2 x+3 y, f_{y}=0+3 x+1 \\
& =3 x+1 \\
& f_{x}(4,-5)=2(4)+3(-5)=8-15=-7 \\
& f_{y}(4,-5)=3(4)+1=13
\end{aligned}
$$

EXAMPLE 2 Find $\partial f / \partial y$ as a function if $f(x, y)=y \sin x y$.
sol. $\frac{\partial f}{\partial y}=y \frac{\partial}{\partial y}(\sin (x y))+(\sin (x y)) \frac{\partial}{\partial y}(y)$

$$
\begin{aligned}
& =y \cdot \cos (x y) \cdot x+\sin (x y) \cdot 1 \\
& =x y \cos (x y)+\sin (x y)
\end{aligned}
$$

EXAMPLE 3 Find f_{x} and f_{y} as functions if

$$
\begin{aligned}
& f(x, y)=\frac{2 y}{y+\cos x} \\
& f_{x}= \frac{(y+\cos x) \frac{\partial}{\partial x}(2 y)-(2 y) \frac{\partial}{\partial x}(y+\cos x)}{(y+\cos x)^{2}} \\
&==\frac{(y+\cos x)(0)-(2 y)(-\sin x)}{(y+\cos x)^{2}} \\
&= \frac{(y+\cos x)(2)-(2 y)(1)}{(y+\sin x} \\
& f_{y}= \frac{(y+\cos x)^{2}}{(y \cos x} \\
& f_{y}=\frac{(y+\cos x)^{2}}{(y)}
\end{aligned}
$$

Implicit Differentiation

$$
z=z(x, y)
$$

EXAMPLE 4 Find $87 / 2 x$ ff the equation

$$
y z-\ln z=x+y
$$

defines z as a function of the two independent variables x and y and the partial derivative exists.

Sol.

$$
\begin{gathered}
\frac{\partial}{\partial x}(y z)-\frac{\partial}{\partial x}(\ln z)=\frac{\partial}{\partial x}(x)+\frac{\partial}{\partial x}(y) \\
y \frac{\partial z}{\partial x}-\frac{1}{z} \cdot \frac{\partial z}{\partial x}=1+0 \\
\left(y-\frac{1}{z}\right) \frac{\partial z}{\partial x}=1 \\
\therefore \frac{\partial z}{\partial x}=\frac{1}{y-\frac{1}{z}}=\frac{z}{y z-1}
\end{gathered}
$$

ex. $\quad y z-\ln z=x+y$ find $\frac{\partial z}{\partial y}$,
where $z=z(x, y)$.

$$
\begin{gathered}
\text { sol. } \quad \frac{\partial}{\partial y}(y z)-\frac{\partial}{\partial y}(\ln z)=\frac{\partial}{\partial y}(x+y) \\
\left.y \frac{\partial z}{\partial y}+z \cdot \frac{\partial}{\partial y}(x)\right)^{\prime}-\frac{1}{z} \frac{\partial z}{\partial y}=0+1 \\
\left(y-\frac{1}{z}\right) \frac{\partial z}{\partial y}=1-z \\
\Rightarrow \frac{\partial z}{\partial y}=\frac{(1-z) z}{y z-1}
\end{gathered}
$$

EXAMPLE 5 The plan $x=1$ intersects the paraboloid $z=x^{2}+y^{2}$ in a parabola. Find the slope of the tangent to the parabola at $(1,2,5)$ (Figure 14.18).

$$
\text { Sal. slope }=\left.\frac{\partial z}{\partial y}\right|_{(1,2)}=\frac{\partial}{\partial y}\left(x^{2}\right)+\frac{\partial}{\partial y}\left(y^{2}\right)
$$

$$
=\left.(0+2 y)\right|_{(1,2)}
$$

$$
=2(2)=4
$$

Functions of More Than Two Variables

EXAMPLE 6 If x, y, and z are independent variables and

$$
f(x, y, z)=x \sin (y+3 z) \text {, find } f_{x}, f_{y}, f_{z} \text {. }
$$

$$
\begin{aligned}
& f_{x}=\frac{\partial}{\partial x}(x \sin (y+3 z))=\sin (y+3 z) \\
& f_{y}=\frac{\partial}{\partial y}(x \sin (y+3 z))=x \cos (y+3 z) \cdot(1)
\end{aligned}
$$

$$
\begin{aligned}
f_{z} & =\frac{\partial}{\partial z}(x \sin (y+3 z)) \\
& =x \cos (y+3 z) \frac{\partial}{\partial z}(y+3 z) \\
& =x \cos (y+3 z) \cdot 3 \\
& =3 x \cos (y+3 z) .
\end{aligned}
$$

EXAMPLE 8 Let

$$
f(x, y)=\left\{\begin{array}{l}
0, x^{2} \\
2 y \neq 0 \\
1 .
\end{array} x y=0 \quad x \cdot x=x^{2} \neq 0\right.
$$

(Figure 14.20).
(a) Find the limit of f as (x, y) approaches $(0,0)$ along the line $y=x$.
(b) Prove that f is not continuous at the origin.
(c) Show that both partial derivative $\partial f / \partial x$ and $\partial f / \partial y$ exist at the origin.

$$
\begin{aligned}
& \text { (a) } \lim _{(x, y) \rightarrow(0,0)} f(x, y)=\operatorname{Lim}_{(x, y) \rightarrow(0,0)}(0)=0 \text {. } \\
& \text { Along } y=x \\
& \text { (b) } f(0,0)=1 \neq \operatorname{Lim} f(x, y) \\
& (X, y) \rightarrow(0,0) \\
& \therefore f \text { is discant of }(0,0) \text {. } \\
& \text { (c) } f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0}\left(\frac{1-1}{h}\right) \\
& =\operatorname{Lim}_{h \rightarrow 0} 0=0 \\
& f_{y}(0,0)=\lim _{k \rightarrow 0} \frac{f(0, k)-f(0,0)}{k}=L_{\lim _{k \rightarrow 0}} \frac{1-1}{k}=0 \text { exists. }
\end{aligned}
$$

Notice that f_{x} and f_{y} exist at $(0,0)$ but f is discount at $(0,0)$.

$$
\begin{aligned}
& \quad z=f(x, y) \\
& f_{x x}, f_{y y}, f_{x y}, f_{y x} \\
& w=f_{(x, y, z)} \\
& f_{x x}, f_{y y}, f_{z z}, f_{x y}, f_{y x}, f_{x z}, f_{z x}
\end{aligned}
$$

$$
f_{y z}, f_{z y}
$$

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}} \text { or } f_{x x}, \quad \frac{\partial^{2} f}{\partial y^{2}} \text { or } f_{y y}, \\
& \sqrt{\frac{\partial^{2} f}{\partial x \partial y}} \text { or } f_{y x,} \text { and } \frac{\partial^{2} f}{\partial y \partial x} \text { or } f_{x y} . \\
& \frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right), \quad \frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right),
\end{aligned}
$$

($\frac{\partial^{2} f}{\partial x \partial y}$ Differentiate first with respect t $O y$, then with respect to x.
$f_{y x y}=\left(f_{y}\right)_{x}$

$$
\frac{\partial^{3} f^{\prime}}{\partial x^{2} \partial y}=f_{y x x}
$$

EXAMPLE 9 If $f(x, y)=x \cos y+y e^{x}$, find the second-order derivatives

Sol.

$$
\begin{aligned}
& f_{x}=\frac{\partial}{\partial x}\left(x \cos y+y e^{x}\right) \\
& f_{x}=\cos y+y e^{x} \\
& f_{y}=\frac{\partial}{\partial y}\left(x \cos y+y e^{x}\right) \\
& f_{y}=-x \sin y+e^{x}
\end{aligned}
$$

$$
f_{x x}=\frac{\partial}{\partial x}\left(f_{x}\right)=\frac{\partial}{\partial x}\left(\cos y+y e^{x}\right)
$$

$$
=y e^{x} .
$$

$$
f_{y y}=\frac{\partial}{\partial y}\left(f_{y}\right)=\frac{\partial}{\partial y}\left(-x \sin y+e^{x}\right)
$$

$$
=-x \cos y .
$$

$$
\begin{aligned}
& f_{x y}=\frac{\partial}{\partial y}\left(f_{x}\right)=\frac{\partial}{\partial y}\left(\cos y+y e^{x}\right) \\
& =-\sin y+e^{x} \\
& \left.f_{y x}=\frac{\partial}{\partial x}\left(f_{y}\right)=\frac{\partial}{\partial x}\left(-x \sin y+e^{x}\right)=-\sin y+e^{x}\right)
\end{aligned}
$$

THEOREM 2-The Mixed Derivative Theorem If $f(x, y)$ and its partial derivatives $f_{x}, f_{y}, f_{x y}$, and $f_{y x}$ are defined throughout an open region containing a point (a, b) and are all continuous at (a, b), then

$$
f_{x y}(a, b)=f_{y x}(a, b)
$$

EXAMPLE 10 Find $\partial^{2} w / \partial x \partial y$ if

$$
w=x y+\frac{e^{y}}{y^{2}+1} .
$$

Sol.

$$
\begin{aligned}
& \frac{\partial^{2} \omega}{\partial x \partial y}=\omega_{y x} \\
& \omega_{y}=x+\frac{\left(y^{2}+1\right) e^{y}-e^{y} \cdot 2 y}{\left(y^{2}+1\right)^{2}} \\
& \omega_{y x}=\frac{\partial}{\partial x}\left(\omega_{y}\right)=1 \\
& \omega_{x}=y \\
& \omega_{x y}=\frac{\partial}{\partial y}\left(\omega_{x}\right)=\frac{\partial}{\partial y}(y)=1
\end{aligned}
$$

the conditions of Thmiz hold for w.
Partial Derivatives of Still Higher Order

$$
\frac{\partial^{3} f}{\partial x \partial y^{2}}=f_{y y x} \quad \frac{\partial^{4} f}{\partial x^{2} \partial y^{2}}=f_{y y x x}
$$

EXAMPLE 11 Find $f_{y x y z}$ if $\left.f(x, y, z)=1-2 x y^{2}\right)^{2}+x^{2} y$.

$$
\text { Sol. } \quad \begin{aligned}
& f_{y}=-4 x y z+x^{2} \\
& f_{y x}=\frac{\partial}{\partial x}\left(f_{y}\right) \\
&=\frac{\partial}{\partial x}\left(-4 x y z+x^{2}\right) \\
&=-4 y z+2 x \\
& f_{y x y}=\frac{\partial}{\partial y}\left(f_{y x}\right) \\
&=\frac{\partial}{\partial y}(-4 y z+2 x) \\
&=-4 z \\
&=\frac{\partial}{\partial z}\left(f_{y x y}\right)=\frac{\partial}{\partial z}(-4 z)
\end{aligned}
$$

$$
E x \quad w=\frac{x y}{y^{2}+2 \sin ^{2} y+1} \text { find } w_{y x x} \text {. }
$$

Sol. $\quad w_{y x x}=\omega_{x x y}$

$$
w_{x}=\frac{y}{1+y^{2}+2 \sin ^{2} y}, \begin{aligned}
& w_{x x}=0 \\
& w_{x x y}=0
\end{aligned}
$$

THEOREM 4-Differentiability Implies Continuity If a function $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$, then f is continuous at $\left(x_{0}, y_{0}\right)$.

COROLLARY OF THEOREM 3 If the partial derivative f_{x} and f_{y} of a function $f(x, y)$ are continuous throughout an open region R, then f is differentiable at every point of R.
Ex. Explain why $f(x, y)=1+x \cdot \ln (x y-5)$
is diffble at $(\underbrace{2,5)}$??
Sol.

$$
\begin{aligned}
f_{x} & =x \cdot \frac{y}{x y-5}+\ln (x y-5) \cdot 1 \\
& =\frac{x y}{x y-5}+\ln (x y-5)
\end{aligned}
$$

f_{x} is cont. at $(2,5)$ sine

$$
\begin{aligned}
& f_{x}(2,5)=\lim _{(x, y) \rightarrow(2,5)} f_{x} \\
& f_{y}=x \frac{x}{x y-5}=\frac{x^{2}}{x y-5}
\end{aligned}
$$

$f y$ is cont. at $(2,5)$
Since f_{x} and f_{y} are cont. at $(2,5)$
$\Rightarrow f$ is diffble at $(2,5)$.

Recall, $y=f(t), \quad t=g(x)$.

$$
\frac{d y}{\partial x}=\frac{d y}{\partial t} \cdot \frac{d t}{\partial x} \cdot \quad \text { Cal } 1
$$

Now, in Cell $, z=f(x, y), x=x(t)$

$$
y=y(t) .
$$

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial z}{\partial y} \cdot \frac{d y}{d t}
$$

$$
\begin{aligned}
& \omega=f(x, y, z), \quad x=x(t), y=h(t), \quad z=z(t) . \\
& \frac{d \omega}{d t}=\frac{\partial \omega}{\partial x} \cdot \frac{d x}{\partial t}+\frac{\partial \omega}{\partial y} \cdot \frac{\partial y}{\partial t}+\frac{\partial \omega}{\partial z} \cdot \frac{d z}{d t}
\end{aligned}
$$

$$
w=w(x, y, z) \quad, x=x(x, s)
$$

$$
y=y(r, s)
$$

$$
\begin{aligned}
& \frac{\partial \omega}{\partial r}=\frac{\partial \omega}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial \omega}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial \omega}{\partial z} \frac{\partial z}{\partial r} \\
& \frac{\partial \omega}{\partial s}=\frac{\partial \omega}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial \omega}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial \omega}{\partial z} \frac{\partial z}{\partial s}
\end{aligned}
$$

Ex. Let $\omega=x y, x=\cos t, y=\sin t$

$$
\text { Find }\left.\frac{d \omega}{d t}\right|_{t=\pi / 2}
$$

Sol. $\frac{d \omega}{d t}=\frac{\partial w}{\partial x} \cdot \frac{d x}{\partial t}+\frac{\partial \omega}{\partial y} \cdot \frac{d y}{\partial t}$

$$
\begin{aligned}
& =y \cdot(-\sin t)+x \cdot(\cos t) \\
\left.\therefore \frac{d \omega}{d t}\right|_{t=\frac{\pi}{2}, x=0, y=1} & =1\left(-\sin \frac{\pi}{2}\right)+0 \cdot \cos \frac{\pi}{2} \quad t=-\frac{\pi}{2} \\
x=-1 . & y=\cos \frac{\pi}{2}=0 \\
y & =\sin \frac{\pi}{2}=1
\end{aligned}
$$

Ex(2)

$$
\begin{aligned}
w=x y+z, \quad x & =\cos t \\
y & =\sin t, z=t
\end{aligned}
$$

Find $\frac{d \omega}{d t}$ at $t=0$

$$
\text { Sol. } \begin{aligned}
&=t=0 \Rightarrow x=1, y=0, z=0 \\
& \frac{d \omega}{d t}=\frac{\partial \omega}{\partial x} \frac{d x}{d t}+\frac{\partial \omega}{\partial y} \frac{d y}{\partial t}+\frac{\partial \omega}{\partial z} \frac{d z}{d t} \\
&=y(-\sin t)+x(\cos t)+1 \cdot 1 \\
&=(\sin t)(-\sin t)+\cos t \cdot \cos t+1 \\
&=-\sin ^{2} t+\cos ^{2} t+1 \\
&=\cos (2 t)+1 . \\
& \left.\therefore \frac{d \omega}{d t} \right\rvert\,=\cos 0+1=2 \\
& t=0
\end{aligned}
$$

EXAMPLE 3 Express $\partial w / \partial r$ and $\partial w / \partial s$ in terms of r and s if

$$
\begin{gathered}
\text { Express } \partial w / \partial r \text { and } \partial w / \partial s \text { in terms of } r \text { and } g \text { if } \\
\left.w=x+2 y+z^{2}, \quad x=\frac{r}{s}, \quad y=r^{2}+\ln s .\right) \quad z=\text { (er.) }
\end{gathered}
$$

$$
\begin{aligned}
\frac{\partial \omega}{\partial r}= & \frac{\partial \omega}{\partial x} \cdot \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r} \\
& +\frac{\partial w}{\partial z} \frac{\partial z}{\partial r} \\
= & (1)\left(\frac{1}{s}\right)+(2)(2 r)+(2 z)(2) \\
= & \frac{1}{s}+4 r \\
\frac{\partial \omega}{\partial s}= & \frac{\partial \omega}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial \omega}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial \omega}{\partial z} \frac{\partial z}{\partial s} \\
= & (1)\left(\frac{-r}{s^{2}}\right)+(2)\left(\frac{1}{s}\right)+(2 z)(0) \\
= & \frac{-r}{s^{2}}+\frac{2}{s}=\frac{2 s-r}{s^{2}}
\end{aligned}
$$

Implicit Differentiation Revisited
If $F(x, y)=0$ find $\frac{d y}{d x}$.

$$
\begin{aligned}
& \left.\frac{\partial F}{\partial x} \cdot \frac{\partial x}{\partial x}\right)^{\prime}+\frac{\partial F}{\partial y} \cdot \frac{d y}{\partial x}=0 \\
& \Rightarrow \frac{d y}{d x}=-\frac{F_{x}}{F_{y}}, F_{y} \neq 0
\end{aligned}
$$

THEOREM 8-A Formula for Implicit Differentiation Suppose that $F(x, y)$ is differentiable and that the equation $F(x, y)=0$ defines y as a differentiable function of x. Then at any point where $F_{y} \neq 0$,

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}} . \tag{1}
\end{equation*}
$$

EXAMPLE 5 Use Theorem 8 to find $d y / d x$ if $y^{2}-x^{2}-\sin x y=0$.
Sol. Cal 1

$$
\begin{aligned}
& 2 y \frac{d y}{d x}-2 x-\cos (x y)\left[x \frac{d y}{d x}+y \cdot 1\right]=0 \\
& \underbrace{2 y \frac{d y}{d x}}-2 x-\underbrace{x \cos (x y) \frac{d y}{d x}}-y \cos (x y)=0 \\
& {[2 y-x \cos (x y)] \frac{d y}{d x}=2 x+y \cos (x y)} \\
& \frac{d y}{d x}=\frac{2 x+y \cos (x y)}{2 y-x \cos (x y)}
\end{aligned}
$$

Cal 3 (Thin 8) $y^{2}-x^{2}-\sin (x y)=0$

$$
\begin{aligned}
& F(x, y)=y^{2}-x^{2}-\sin (x y) \\
& \frac{d y}{d x}=-\frac{F_{x}}{F_{y}}=-\frac{-2 x-\cos (x y) \cdot y}{2 y-\cos (x y) \cdot x} \\
&=\frac{2 x+y \cos (x y)}{2 y-x \cos (x y)}
\end{aligned}
$$

$$
\begin{aligned}
& F(x, y, z)=0, \quad z=z(x, y) \\
& \frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}} \\
& \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}
\end{aligned}
$$

EXAMPLE $6 \quad$ Fin $\left(\frac{\partial z}{\partial x}\right)$ and $\frac{\partial z}{\partial y}$ at $(0,0,0)$ if $\underset{\left.x^{3}+z^{2}+y e^{x z}+z \cos y\right)}{ }=0$.

$$
\begin{aligned}
&\left.\frac{\partial z}{\partial x}\right|_{(0,0, p)}=-\left.\frac{F_{x}}{F_{z}}\right|_{(0,0,0)}=-\frac{3 x^{2}+y z e^{x z}}{2 z+y x e^{x z}+\cos y} \\
&=-\frac{0+0}{0+0+1}=0 \\
& \frac{\partial z}{\left.\frac{\partial y}{\partial y}\right|_{(0,0,0)}}=-\frac{\left.\left.F_{y}\right|_{z}\right|_{(10,0)}}{}=-\frac{e^{x z}+-z \sin y}{2 z+y x e^{x z}+\cos y} \\
&=-\frac{1+0}{0+0+1}=-1
\end{aligned}
$$

120

How If $z^{3}-x z-y=0$, where z defines a function of x and y.

$$
\text { Find } \frac{\partial^{2} z}{\partial x \partial y}
$$

Directional Derivatives in the Plane
DEFINITION The derivative of f at $P_{0}\left(x_{0}, y_{0}\right)$ in the direction of the unit vector $\mathrm{u}=\boldsymbol{u}_{1} \mathrm{i}+\boldsymbol{u}_{\mathbf{2}} \mathrm{j}$ is the number

$$
\begin{equation*}
\left(D_{\vec{u}} f\right)_{P_{0}}\left(\frac{d f}{d s}\right)_{\mathbf{u}, P_{0}}=\lim _{s \rightarrow 0} \frac{f\left(x_{0}+s u_{1}, y_{0}+s u_{2}\right)-f\left(x_{0}, y_{0}\right)}{s}, \tag{1}
\end{equation*}
$$

provided the limit exists.

The directional derivative defined by Equation (1) is also denoted by

$$
\left(D_{\mathbf{u}} f\right)_{P_{0}} .\left\{\begin{array}{l}
\text { "The derivative of } f \text { at } P_{0} \\
\text { in the direction of } \mathbf{u} \text { " }
\end{array}\right.
$$

EXAMPLE 1 Using the definition, find the derivative of

$$
f(x, y)=x^{2}+x y
$$

at $\begin{gathered}x_{0} y_{\mathbf{s}} \\ P_{0}(1,2)\end{gathered}$ in the direction of the unit vector $\mathbf{u}=(1 / \sqrt{2}) \mathbf{u}+\left(1 / \breve{u}_{1}\right) \mathbf{u}$.

$$
\begin{aligned}
\left.D_{u} f\right|_{P_{0}(1,2)} & =\operatorname{Lim}_{h \rightarrow 0} \frac{f\left(1+\frac{1}{\sqrt{2}} h, 2+\frac{1}{\sqrt{2}} h\right)-f(1,2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(1+\frac{1}{\sqrt{2}} h\right)^{2}+\left(1+\frac{1}{\sqrt{2}} h\right)\left(2+\frac{1}{\sqrt{2}} h\right)-(1+2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(1+\sqrt{2} h+\frac{1}{2} h^{2}+2\right)+\frac{3}{\sqrt{2}} h+\frac{1}{2} h^{2}-3}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}+\left(\sqrt{2}+\frac{3}{\sqrt{2}}\right) h}{h} \\
& =\lim _{h \rightarrow 0}\left[h+\left(\sqrt{2}+\frac{3 \sqrt{2}}{2}\right)\right]=\frac{5 \sqrt{2}}{2}
\end{aligned}
$$

the rate of change of $f(x, y)=x^{2}+x y$ at $P_{0}(1,2)$
in the direction $\vec{u}=\frac{1}{\sqrt{2}} i+\frac{1}{\sqrt{2}} j$

$$
\text { is } \frac{5}{\sqrt{2}}
$$

That is, $\left(D_{\vec{u}} F\right)_{p_{0}}=\frac{5}{\sqrt{2}}$.
Calculation and Gradients $\frac{\vec{u}=u_{1} i+u_{2 j}}{\left(x_{0}, y 0\right)} L$
line $x=x_{0}+u_{1} t, y=y_{0}+u_{2} t$

$$
\begin{aligned}
& \left(\frac{d f}{\partial s}\right)_{p_{0}}=\left(\frac{\partial f}{\partial x}\right)_{p_{0}} \frac{d x}{d s}+\left(\frac{\partial f}{\partial y}\right)_{p_{0}} \frac{d y}{d s} \\
& =\left(\frac{\partial f}{\partial x}\right) p_{0} u_{1}+\left(\frac{\partial f}{\partial y}\right) p_{0} u_{2} \\
& =\underbrace{\left[\left(\frac{\partial f}{\partial x}\right) p_{0} i+\left(\frac{\partial f}{\partial y}\right) p_{0} j\right]}_{\text {Gradient of } f} \cdot \underbrace{\left(u_{1} i+u_{2 j}\right)}_{\substack{\text { Direction } \\
\vec{u}}} \\
& \text { at } P_{0} \\
& (\nabla f)_{p_{0}}^{\text {at } \rho_{0}} \quad \nabla f: \operatorname{nabla} f \\
& \therefore\left(D_{u} f\right)_{p_{0}}=(\nabla f)_{p_{0}} \cdot \vec{u}
\end{aligned}
$$

DEFINITION is the vector

The gradient vector (gradient) of $f(x, y)$ at a point $P_{0}\left(x_{0}, y_{0}\right)$

$$
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}
$$

obtained by evaluating the partial derivatives of f at P_{0}.

The notation ∇f is read "grad f " as well as "gradient of f " and "del f." The symbol ∇ by itself is read "del." Another notation for the gradient is grad f.

THEOREM 9—The Directional Derivative Is a Dot Product If $f(x, y)$ is differentiable in an open region containing $P_{0}\left(x_{0}, y_{0}\right)$, then

$$
\begin{equation*}
\left(D_{\hat{u}} f\right)_{p_{0}}=\left(\frac{d f}{d s}\right)_{\mathbf{u}, P_{0}}=(\nabla f)_{P_{0}} \cdot \mathbf{u} \tag{4}
\end{equation*}
$$

the dot product of the gradient ∇f at P_{0} and \mathbf{u}.

EXAMPLE 2 Find the derivative of $f(x, y)=x e^{y}+\cos (x y)$ at the point $(2,0)$ in the direction of $\mathbf{v}=3 \mathbf{i}-4 \mathbf{j}$.
Sol. $\left(D_{\vec{v}} f\right)_{p_{0}}$.

$$
\begin{aligned}
& \text { The direction } \vec{v} \text { is not unit ?? } \\
& \vec{u}=\frac{\vec{V}}{|\vec{v}|}=\frac{3}{5} i-\frac{4}{5} j, \\
& \left.f_{x}\right|_{(2,0)}=\left.\left(e^{y}-\sin (x y) \cdot y\right)\right|_{(2,0)}=1-0=\sqrt{9+16}=5 \\
& \left.f_{y}\right|_{(2,0)}=\left.\left(x e^{y}-x \sin (x y)\right)\right|_{(2,0)}=2-0=\sqrt{2} \\
& \therefore(\nabla f)_{P_{0}=(2,0)}=1 i+2 j=i+2 j \\
& \therefore\left(D_{\vec{a}} f\right)_{p_{0}}=(\nabla f)_{P} \cdot \vec{u}=\left(\frac{3}{5}\right)(1)-\frac{4}{5}(2)=-1
\end{aligned}
$$

$$
\begin{aligned}
D_{\vec{u}} f=\nabla f \cdot \vec{u} & =|\nabla f||\vec{u}| \cos \theta \\
& =|\nabla f| \cos \theta
\end{aligned}
$$

Evaluating the dot product in the formula

$$
D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=|\nabla f \| \mathbf{u}| \cos \theta=|\nabla f| \cos \theta
$$

where θ is the angle between the vectors \mathbf{u} and ∇f, reveals the following properties.

Properties of the Directional Derivative $\boldsymbol{D}_{\mathrm{u}} \boldsymbol{f}=\nabla \boldsymbol{f} \cdot \mathbf{u}=|\nabla \boldsymbol{f}| \cos \theta$

1. The function f increases most rapidly when $\cos \theta=1$ or when $\theta=0$ and \mathbf{u} is the direction of ∇f. That is, at each point P in its domain, f increases most rapidly in the direction of the gradient vector ∇f at P. The derivative in this direction is

$$
D_{\mathrm{u}} f=|\nabla f| \cos (0)=|\nabla f| .
$$

2. Similarly, f decreases most rapidly in the direction of $-\nabla f$. The derivative in this direction is $D_{\mathbf{u}} f=|\nabla f| \cos (\pi)=-|\nabla f|$.
3. Any direction u orthogonal to a gradient $\nabla f \neq 0$ is a direction of zero change in f because θ then equals $\pi / 2$ and

$$
D_{\mathbf{u}} f=|\nabla f| \cos (\pi / 2)=|\nabla f| \cdot 0=0 .
$$

EXAMPLE 3 Find the directions in which $f(x, y)=\left(x^{2} / 2\right)+\left(y^{2} / 2\right)$
(a) increases most rapidly at the point $(1,1)$.
(b) decreases most rapidly at $(1,1)$.
(c) What are the directions of zero change in f at $(1,1)$?

$$
\begin{gathered}
\text { sol. }\left.f_{x}\right|_{(1,1)}=\left.x\right|_{(1,1)}=1,\left.f_{y}\right|_{(1,1)}=\left.y\right|_{(1,1)}=1 \\
\left.\therefore \nabla f\right|_{(1,1)}=i+j,|\nabla f|=\sqrt{2} .
\end{gathered}
$$

$$
D_{\varepsilon} f(1,1,)=|\nabla f|=\sqrt{2} .
$$

$$
\text { (b) } \vec{u}=-\frac{\nabla f}{\mid \nabla f 1}=-\frac{1}{\sqrt{2}} i-\frac{1}{\sqrt{8}} j
$$

$$
D_{s} f(1,1)=-|D f|=-\sqrt{2}
$$

$$
\begin{aligned}
& \text { (c) }\left.D_{\vec{u}} f\right|_{(1,0)} \\
& (\nabla f)_{(1,1)} \cdot \vec{u}=0 \\
& (i+j) \cdot \vec{u}=0 \\
& (i+j) \cdot\left(u_{1} i+u_{2 j}\right)=0 \\
& u_{1}+u_{2}=0 \quad \text { and } u_{1}^{2}+u_{2}^{2}=1 \\
& \left.u_{1}=-u_{2}\right) \quad \therefore 2 u_{1}^{2}=1 \\
& \quad u_{1}= \pm \frac{1}{\sqrt{2}} \\
& u_{1}=\frac{1}{\sqrt{2}} \Rightarrow u_{2}=-\frac{1}{\sqrt{2}} \Rightarrow \vec{u}=\frac{1}{\sqrt{2}} i-\frac{1}{\sqrt{2} j} \\
& u_{1}=-\frac{1}{\sqrt{2}} \Rightarrow u_{2}=\frac{1}{\sqrt{2}} \Rightarrow \vec{v}=\frac{-1}{\sqrt{2}} i+\frac{1}{\sqrt{2} j}
\end{aligned}
$$

$$
\begin{aligned}
\left.v^{\prime s}(D)_{\vec{u}}\right)_{(1,1)} & =\left.(\nabla f)\right|_{(1,1)} \cdot \vec{u} \\
& =(i+j) \cdot\left(\frac{1}{\sqrt{2}} i-\frac{1}{\sqrt{2}} j\right) \\
& =\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=0
\end{aligned}
$$

$$
\text { and } \begin{aligned}
D_{\vec{v}} f & =\left.\nabla f\right|_{(1, 八)} ^{\sqrt{2}} \cdot \vec{v} \\
& =(i+j) \cdot\left(-\frac{1}{\sqrt{2}} i+\frac{1}{\sqrt{2}} j\right)=0
\end{aligned}
$$

If $f(x, y)$ has a constant c along a smooth curve

$$
\begin{gathered}
\vec{r}=g(t) i+h(t) j \\
\Rightarrow(x, y)=c \quad \text { level curve } \\
f(g(t), h(t))=c \\
\frac{d}{\partial t} f(g(t), h(t))=\frac{d}{d t}(c) \\
\frac{\partial f}{\partial x} \frac{d x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}=0 \\
\frac{\partial f}{\partial x} g^{\prime}(t)+\frac{\partial f}{\partial y} h^{\prime}(t)=0 \\
\left(\frac{\partial f}{\partial x} i+\frac{\partial f}{\partial y} j\right) \cdot\left(g^{\prime}(t) i+h^{\prime}(t) j\right)=0 \\
\\
\quad\left(f f=\frac{\partial \vec{r}}{\partial t}=0\right.
\end{gathered}
$$

Vf is normal to the tangent vector $\frac{d \vec{r}}{d t}$
$\Rightarrow \nabla f$ is normal to the curse

At every point $\left(x_{0}, y_{0}\right)$ in the domain of a differentiable function $f(x, y)$, the gradient of f is normal to the level curve through $\left(x_{0}, y_{0}\right)$ (Figure 14.30).

The level curve $f(x, y)=f\left(x_{0}, y_{0}\right)=C$

$$
\text { The line through } P_{0}\left(x_{0}, y_{0}\right) \text { normal }
$$

to the vector $\vec{N}=A i+B j$

$$
\begin{aligned}
\text { has the eq. } & A\left(x-x_{0}\right)+B\left(y-y_{0}\right)=0 \\
\text { if } \vec{N}=(\nabla f)_{\left(x_{0}, y_{0}\right)}= & f_{x}\left(x_{0,0}\right) i+f_{y}\left(x_{0}, y_{2} j\right.
\end{aligned}
$$

the eq. is the tangent line given

$$
\frac{b y}{f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=0}
$$

EXAMPLE 4 Find an equation for the tangent to the ellipse

$$
\frac{x^{2}}{4}+y^{2}=2
$$

(Figure 14.31) at the point $(-2,1) . \quad f(x, y)=2$ level curve

$$
\begin{aligned}
& \text { (Vf(-2,1) }=-\mathbf{i}+2 \mathbf{j} \uparrow_{\vec{N}}^{y} \quad x-2 y=-4 \\
& 1 \quad f(x, y)=\frac{x^{2}}{4}+y^{2} \\
& \left.f_{x}\right|_{(-2,1)}=\left.\frac{2 x}{4}\right|_{(-2,1)}=-1 \\
& \left.f_{y}\right|_{(-2,1)}=\left.2 y\right|_{(-2,1)}=2 \\
& \therefore \vec{N}=\left.\nabla f\right|_{(2,1)}=-i+2 j
\end{aligned}
$$

\therefore The tangent hire

$$
\begin{gathered}
f_{x}(-2,1)(x+2)+f_{y}(-2,1)(y-1)=0 \\
-1(x+2)+2(y-1)=0 \\
-x+2 y=4
\end{gathered}
$$

Functions of Three Variables

For a differentiable function $f(x, y, z)$ and a unit vector $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}$ in space, we have

$$
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

and

$$
D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=\frac{\partial f}{\partial x} u_{1}+\frac{\partial f}{\partial y} u_{2}+\frac{\partial f}{\partial z} u_{3}
$$

The directional derivative can once again be written in the form

$$
D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=|\nabla f| \| u|\cos \theta=|\nabla f| \cos \theta
$$

EXAMPLE 6
(a) Find the derivative of $f(x, y, z)=x^{3}-x y^{2}-z$ at $P_{0}(1,1,0)$ in the direction of $\mathbf{v}=2 \mathbf{i}-3 \mathbf{j}+6 \mathbf{k}$.
(b) In what directions does f change most rapidly at P_{0}, and what are the rates of change in these directions?

Sol.

(b) f increases mast rapidly
in the direction of $\nabla f=2 i-2 j-k$
The rate of change is $|\nabla f|=\sqrt{q}=3$
f decreases most rapidly in
the direction of $-\nabla f=-2 i+2 j+k$

$$
-|\nabla f|=-\sqrt{q}=-3
$$

Algebra Rules for Gradients

1. Sum Rule:
2. Difference Rule:

$$
\begin{aligned}
& \nabla(f+g)=\nabla f+\nabla g \\
& \nabla(f-g)=\nabla f-\nabla g
\end{aligned}
$$

3. Constant Multiple Rule:
$\nabla(k f)=k \nabla f \quad$ (any number k)
4. Product Rule:
$\nabla(f g)=f \nabla g+g \nabla f$
5. Quotient Rule:
$\nabla\left(\frac{f}{g}\right)=\frac{g \nabla f-f \nabla g}{g^{2}}$

Tangent Planes and Normal Lines

If $\mathbf{r}=g(t) \mathbf{i}+h(t) \mathbf{j}+k(t) \mathbf{k}$ is a smooth curve on the level surface $f(x, y, z)=c$ of a differentiable function f, then $f(g(t)),(h(t),(k(t))=c$. Differentiating both sides of this equation with respect to t leads to

$$
\underbrace{\frac{\partial f}{\frac{\partial}{d t} f(g(t), h(t), k(t))}=\frac{d}{d t}(c)}_{\nabla f} \begin{array}{r}
\frac{\partial f}{\partial x} \frac{d g}{d t}+\frac{\partial f}{\partial y} \mathbf{d} \cdot \frac{d h}{d t}+\frac{\partial f}{\partial z} \frac{d k}{d t}=0 \\
d \mathbf{r} / d t)
\end{array} \underbrace{\left.\frac{d g}{d t} \mathbf{i}+\frac{d h}{d t} \mathbf{j}+\frac{d k}{d t} \mathbf{k}\right)}=0 .
$$

DEFINITIONS The tangent plane at the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ on the level surface $f(x, y, z)=c$ of a differentiable function f is the plane through P_{0} normal to $\left.\nabla f\right|_{P_{0}}$.
The normal line of the surface at P_{0} is the line through P_{0} parallel to $\left.\nabla f\right|_{P_{0}}$.

Tangent Plane to $f(x, y, z)=c$ at $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$

$$
f_{x}\left(P_{0}\right)\left(x-x_{0}\right)+f_{y}\left(P_{0}\right)\left(y-y_{0}\right)+f_{z}\left(P_{0}\right)\left(z-z_{0}\right)=0
$$

Normal Line to $f(x, y, z)=c$ at $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$

$$
x=x_{0}+f_{x}\left(P_{0}\right) t, \quad y=y_{0}+\underbrace{f_{y}\left(P_{0}\right) t,} \quad z=z_{0}+\underbrace{f_{z}\left(P_{0}\right) t}
$$

EXAMPLE 1 Find the tangent plane and normal line of the surface

$$
\begin{aligned}
& \text { Find the tangent plane and normal line of the surface } \\
& f(x, y, z)=x^{2}+y^{2}+z-9=0 \quad z=9-x^{2}-y^{2}
\end{aligned}
$$

at the point $P_{0}(1,2,4)$.
Sol. $\left.f_{x}\right|_{p_{0}}=\left.2 x\right|_{(1,2,4)}=2$

FIGURE 14.33 The tangent plane and normal line to this surface at P_{0} (Example 1).

The tangent plane is

$$
\begin{aligned}
& f_{x}\left(p_{0}\right)(x-1)+f_{y}\left(p_{0}\right)(y-2)+f_{z}\left(p_{0}\right)\left(z-z_{0}\right)=0 \\
\Rightarrow & 2(x-1)+4(y-2)+1(z-4)=0 \\
& \text { or } 2 x+4 y+z=14
\end{aligned}
$$

The line normal to the surface at p_{0} is

$$
\begin{aligned}
& x=x_{0}+f_{x}\left(p_{0}\right) t=1+2 t \\
& y=y_{0}+f_{y}\left(p_{0}\right) t=2+4 t \quad, t \in \mathbb{R} \\
& z=z_{0}+f_{z}\left(p_{0}\right) t=4+t
\end{aligned}
$$

$$
F(x, y, z)=f(x, y)-z=0 \quad f(x, y, z)=c
$$

Plane Tangent to a Surface $z=f(x, y)$ at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$
The plane tangent to the surface $z=f(x, y)$ of a differentiable function f at the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)=\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is

$$
\begin{equation*}
f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\underbrace{f_{y}\left(x_{0}, y_{0}\right)}\left(y-y_{0}\right) \bigodot\left(z-z_{0}\right)=0 . \tag{4}
\end{equation*}
$$

EXAMPLE 2 Find the plane tangent to the surface $z=x \cos y-y e^{x}$ at $(0,0,0)$.
Sol. $f(x, y, z)=x \cos y-y e^{x}-z=0$

$$
\left.\nabla f\right|_{(0,0,0)}=\left(f_{x} i+f_{y} j+f_{z} k\right)_{p_{0}(0,0,0)}
$$

$$
\begin{aligned}
& =\left(\cos y-y e^{x}\right) i+\left(-x \sin y-e^{x}\right) j-\left.k\right|_{(0,0,1)} \\
& =i-j-k
\end{aligned}
$$

The tangent plane is

$$
\begin{gathered}
1(x-0)-1(y-0)-1(z-0)=0 \\
\text { or } x-y-z=0
\end{gathered}
$$

EXAMPLE 3 The surfaces

$$
f(x, y, z)=x^{2}+y^{2}-2=0
$$

A cylinder
and

$$
g(x, y, z)=x+z-4=0
$$

A plane
meet in an ellipse E (Figure 14.34). Find parametric equations for the line tangent to E at the point $P_{0}(1,1,3)$.
The target line is $\perp \nabla g$ as d of at P_{0} \Rightarrow Tangent line $\| \vec{v}=\nabla f \times \nabla g$ at p_{0}.

$$
\begin{aligned}
\left.\nabla f\right|_{p_{0}} & =f_{x} i+f_{y} j+\left.f_{2} k\right|_{p_{0}} \\
& =2 x i+\left.2 y j\right|_{(i, 1,3)}=2 i+2 j
\end{aligned}
$$

$$
x=1+2 t, y=1-2 t, \quad z=3-2 t
$$

Estimating Change in a Specific Direction
Recall, $y=f(x) \Rightarrow d f=f^{\prime}\left(p_{0}\right) d s$ (ordinary derv.) (increment)
Is: small distance from a point po to another point.
If f is a function of two ar more variables,

$$
d f=\left(\left.\nabla f\right|_{p_{0}} \cdot \vec{u}\right) d s \cdot\binom{\text { Direction d }}{\text { derivative }} \times \text { increment }
$$

Estimating the Change in \boldsymbol{f} in a Direction \mathbf{u}
To estimate the change in the value of a differentiable function f when we move a small distance $d s$ from a point P_{0} in a particular direction u, use the formula

$$
d f=(\underbrace{\left.\overline{\left.\nabla f\right|_{P_{0}} \cdot \mathbf{u}}\right)}_{\begin{array}{c}
\text { Directional } \\
\text { derivative }
\end{array}} \underbrace{d s}_{\begin{array}{c}
\text { Distance } \\
\text { increment }
\end{array}}
$$

EXAMPLE 4 Estimate how much the value of

$$
f(x, y, z)=y \sin x+2 y z
$$

will_change if the point $P(x, y, z)$ moves 0.1 unit from $P_{0}(0,1,0)$ straight toward $P_{1}(2,2,-2)$.

$$
\begin{aligned}
& \text { Sol. } d s=0.1, \vec{u}=\frac{\overrightarrow{P_{0} P_{1}}}{\left|\vec{P}_{0} j_{1}\right|}=\frac{2 i+j-2 k}{\sqrt{4+1+4}} \\
& =\frac{2}{3} i+\frac{1}{3} j-\frac{2}{3} k \\
& \left.\nabla f\right|_{p_{0}}=f_{x} i+f f_{j}+\left.f_{z} k\right|_{p_{0}} \\
& =(y \cos x) i+(\sin x+2 z) j+\left.(2 y) k\right|_{(0,1,0)} \\
& =i+2 k \\
& =\int_{0}^{\infty}=\sim \underbrace{\infty}_{0} \\
& =\left[(i+2 k) \cdot\left(\frac{2}{3} i+\frac{1}{3} j-\frac{2}{3} k\right)\right](\cdot .1) \\
& =\left(\frac{2}{3}-\frac{4}{3}\right)(0.1)=\frac{-0 \cdot 2}{3} \\
& =-\frac{2}{30} \\
& \sim-0.067 \text { unit. }
\end{aligned}
$$

How to Linearize a Function of Two Variables
Recall, $y=f(x) \Rightarrow$ linearization at $x=x_{0}$

$$
\begin{aligned}
& L(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \\
& \therefore L(x) \approx f(x)
\end{aligned}
$$

DEFINITIONS The linearization of a function $f(x, y)$ at a point $\left(x_{0}, y_{0}\right)$ where f is differentiable is the function

$$
\begin{equation*}
L(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \tag{5}
\end{equation*}
$$

The approximation

$$
f(x, y) \approx L(x, y)
$$

is the standard linear approximation of f at $\left(x_{0}, y_{0}\right)$.

EXAMPLE 5 Find the linearization of

$$
f(x, y)=x^{2}-x y+\frac{1}{2} y^{2}+3
$$

\qquad
at the point $(3,2)$.

$$
\begin{aligned}
& L(x, y)=f(3,2)+f_{x}(3,2)(x-3)+f_{y}(3,2)(y-2) \\
& f(3,2)=3^{2}-6+\frac{1}{2}(4)+3=8 \\
& f_{x}(3,2)=\left.(2 x-y)\right|_{(3,2)}=2(3)-2=4 \\
& f_{y}(3,2)=\left.(-x+y)\right|_{(3,2)}=-3+2=-1 \\
& \therefore L(x, y)=8+4(x-3)-1(y-2) \\
& L(x, y)=4 x-y-2
\end{aligned}
$$

Ex. Approximate $f(2.9,1.9)$ in the latex

$$
\text { Sol. } \begin{aligned}
f(2.9,1.9) \approx L(2.9,1.9) & =4(2.9)-1.9-2 \\
& =11.6-3.9=7.7
\end{aligned}
$$

Sunday, July 04 , 2 The Error in the Standard Linear Approximation
If f has continuous first and second partial derivatives throughout an open set containing a rectangle R centered at $\left(x_{0}, y_{0}\right)$ and if M is any upper bound for the values of $\left|f_{x x}\right|,\left|f_{y y}\right|$, and $\left|f_{x y}\right|$ on R, then the error $E(x, y)$ incurred in replacing $f(x, y)$ on R by its linearization

$$
L(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

satisfies the inequality

$$
|E(x, y)| \leq \frac{1}{2} M\left(\left|x-x_{0}\right|+\left|y-y_{0}\right|\right)^{2}
$$

EXAMPLE 6 Find an upper bound for the error in the approximation $f(x, y) \approx L(x, y)$ in Example 5 over the rectangle

$$
R: \quad \mid x-(3|\leq 0.1, \quad| y-2 \mid \leq 0.1
$$

Express the upper bound as a percentage of $f(3,2)$, the value of f at the center of the rectangle.

$$
\begin{aligned}
& \text { Sol. } f(x, y)=x^{2}-x y+\frac{1}{2} y^{2}+3 \\
& f_{x}=2 x-y, f_{y}=-x+y \\
& f_{x x}=2, f_{y y}=1, f_{x y}=-1
\end{aligned}
$$

$$
\left|f_{x x}\right|=2, \quad\left|f_{y y}\right|=1, \quad\left|f_{x-y}\right|=1
$$

$$
\text { the largest of } \left.\left\{\left|f_{x x}\right|,\left|f_{y y}\right|, \mid f_{x y}\right)\right\} \text { is } 2
$$

$$
\therefore M=2
$$

$$
\begin{aligned}
|E(x, y)| & \leq \frac{1}{2} M\left(\left|x-x_{0}\right|+\left|y-y_{0}\right|\right)^{2} \\
= & \frac{1}{2} M(|x-3|+|y-2|)^{2} \\
& \leq \frac{1}{2}(2)(0.1+0.1)^{2}=0.04
\end{aligned}
$$

As a percentage of $f(3,2)=8$, the error is no greater than $=\frac{0.04}{8} \times 100 \%=0.5 \%$

1. The linearization of $f(x, y, z)$ at a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
L(x, y, z)=f\left(P_{0}\right)+f_{x}\left(P_{0}\right)\left(x-x_{0}\right)+f_{y}\left(P_{0}\right)\left(y-y_{0}\right)+f_{z}\left(P_{0}\right)\left(z-z_{0}\right)
$$

2. Suppose that R is a closed rectangular solid centered at P_{0} and lying in an open region on which the second partial derivatives of f are continuous. Suppose also that $\left|f_{x x}\right|,\left|f_{y y}\right|,\left|f_{z z}\right|,\left|f_{x y}\right|,\left|f_{x z}\right|$, and $\left|f_{y z}\right|$ are all less than or equal to M throughout R. Then the error $E(x, y, z)=f(x, y, z)-L(x, y, z)$ in the approximation of f by L is bounded throughout R by the inequality

$$
|E| \leq \frac{1}{2} M\left(\left|x-x_{0}\right|+\left|y-y_{0}\right|+\left|z-z_{0}\right|\right)^{2}
$$

EXAMPLE 10
Find the linearization $L(x, y, z)$ of

$$
f(x, y, z)=x^{2}-x y+3 \sin z
$$

at the point $\left(x_{0}, y_{0}, z_{0}\right)=(2,1,0)$. Find an upper bound for the error incurred in replacing f by L on the rectangle

$$
R: \quad|x-2| \leq 0.01, \quad \mid y-(1|\leq 0.02, \quad| z \mid \leq 0.01 .
$$

$$
\text { sol } f(2,1,0)=4-2(1)+3 \sin 0=2
$$

$$
\begin{aligned}
& \left.f_{x}(2,1,0)=\left.(2 x-y)\right|_{(2,1,0}=4-1=\sqrt{3}\right) \\
& f_{y}(2,1,0)=-\left.x\right|_{(2,0,0)}=-(-2)
\end{aligned}
$$

$$
\begin{aligned}
& f_{z}(2,1,0)=3 \cos z\left.\right|_{(2,1,0)}=3 \cos 0 \\
&=3
\end{aligned}
$$

$$
L(x, y, z)=f(2,1,1)+f_{x}(2,1,2)(x-2)
$$

$$
+f_{y}(2,1,0)(y-1)+f_{z}(2,1,0) z
$$

$$
\begin{aligned}
& =2+3(x-2)-2(y-1)+3 z \\
& =3 x-2 y+3 z-2
\end{aligned}
$$

$$
\begin{aligned}
|E(x, y, z)| & \leq \frac{1}{2} M\left(\left|x-x_{0}\right|+\left|y-y_{0}\right|+\left|z-z_{1}\right|\right)^{2} \\
& =\frac{1}{2} M(|x-2|+|y-1|+|z|)^{2}
\end{aligned}
$$

Now, $f_{x}=2 x-y, f_{y}=-x, f_{z}=3 \cos z$

$$
\begin{gathered}
f_{x x}=2, f_{y y}=0, f_{z z}=-3 \sin z \\
f_{x y}=-1, f_{x z}=0, f_{y z}=0 \\
\left|f_{x x}\right|=2,\left|f_{y y}\right|=0,\left|f_{z z}\right|=3|\sin z| \\
<3 \sin (0.01) \\
\left|f_{x y}\right|=0,\left|f_{x z}\right|=0,\left|f_{y z}\right|=0,0.03
\end{gathered}
$$

$\therefore M=2$ (upper bound of the second partials derv.)

$$
\begin{aligned}
\therefore|E| & \leq \frac{1}{2}(2)(|x-2|+|y-1|+|z|)^{2} \\
& \leqslant(0.01+0.02+0.01)^{2}=0.0016
\end{aligned}
$$

As a percentage of $f(2,1,0)=2$, the error no greater than

$$
\frac{0.0016}{2} \times 100 \%=0.08 \%
$$

Differentials

DEFINITION If we move from $\left(x_{0}, y_{0}\right)$ to a point $\left(x_{0}+d x, y_{0}+d y\right)$ nearby, the resulting change

$$
(d f)=f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y
$$

in the linearization of f is called the total differential of \boldsymbol{f}.

If the second partial derivatives of f are continuous and if x, y, and z change from x_{0}, y_{0}, and z_{0} by small amounts $d x, d y$, and $d z$, the total differential

$$
d f=f_{x}\left(P_{0}\right) d x+f_{y}\left(P_{0}\right) d y+f_{z}\left(P_{0}\right) d z
$$

gives a good approximation of the resulting change in f.

EXAMPLE 7 Suppose that a cylindrical can is designed to have a radius of 1 n . and a height of 5 in ., but that the radius and height are off by the amounts $d r=+0.03$ and $d h=-0.1$. Estimate the resulting absolute change in the volume of the can.

$$
\begin{aligned}
& V o l u m e=\pi r^{2} h \\
& V(r, h)=\pi r^{2} h
\end{aligned}
$$

Giver $r=1, h=5, d r=+0.03, d h=-0.1$

$$
\begin{aligned}
d V= & V_{r} d r+V_{h} d h \\
= & (2 \pi r h) d r+\left(\pi r^{2}\right) d h \\
= & 2 \pi(1)(5)(0.83)+\pi(1)^{2}(-0.1) \\
= & =0.3 \pi-0.1 \pi=0.2 \pi . \\
V= & \pi r^{2} h=\pi(1)^{2}(5)=5 \pi
\end{aligned}
$$

percentage error in the Calculation

$$
\begin{aligned}
& \text { of } V \text { is }\left|\frac{d V}{V}\right| \times \frac{100 /}{2}\left|\frac{0.2 \pi}{5 \pi}\right| \times 10 \% \\
& =4 \%
\end{aligned}
$$

EXAMPLE 9 The volume $V=\pi r^{2} h$ of a right circular cylinder is to be calculated from measured values of r and h. Suppose that r is measured with an error of no more than 2% and h with an error of no more than 0.5%. Estimate the resulting possible percentage erfor in the calculation of V.

Given. $\quad V=\pi r^{2} h$

$$
\left|\frac{d r}{r}\right| \leqslant 2 \%,\left|\frac{d h}{h}\right| \leqslant 0.5 \%
$$

$$
\text { find }\left|\frac{d v}{v}\right| \leq ? ?
$$

Now, $\left|\frac{d V}{V}\right|=\left|\frac{V_{r} d r+V_{h} d h}{\pi r^{2} h}\right|$

$$
=\left|\frac{2 \pi r h d r+\pi r^{2} d h}{\pi r^{2} h}\right|
$$

$$
=4.5 \%=0.045
$$

the error in Volume Calculation is at a most 4.5%.

Derivative Tests for Local Extreme Values

DEFINITIONS Let $f(x, y)$ be defined on a region R containing the point (a, b). Then

1. $f(a, b)$ is a local maximum value of f if $f(a, b) \geq f(x, y)$ for all domain points (x, y) in an open disk centered at (a, b).
2. $f(a, b)$ is a local minimum value of f if $f(a, b) \leq f(x, y)$ for all domain points (x, y) in an open disk centered at (a, b).

THEOREM 10—First Derivative Test for Local Extreme Values If $f(x, y)$ has a local maximum or minimum value at an interior point (a, b) of its domain and if the first partial derivatives exist there, then $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$.

DEFINITION An interior point of the domain of a function $f(x, y)$ where both f_{x} and f_{y} are zero or where one or both of f_{x} and f_{y} do not exist is a critical point of f.

DEFINITION A differentiable function $f(x, y)$ has a saddle point at a critical point (a, b) if in every open disk centered at (a, b) there are domain points (x, y) where $f(x, y)>f(a, b)$ and domain points (x, y) where $f(x, y)<f(a, b)$. The corresponding point $(a, b, f(a, b))$ on the surface $z=f(x, y)$ is called a saddle point of the surface (Figure 14.42).

THEOREM 11—Second Derivative Test for Local Extreme Values Suppose that $f(x, y)$ and its first and second partial derivatives are continuous throughout a disk centered at (a, b) and that $\left[f_{x}(a, b)=f_{y}\right)(a, b)=0$. Then

ii) f has a local minimum at (a, b) if $f_{x x}>0$ and $f_{x x} f_{y y}-f_{x y}{ }^{2}>0$ at (a, b).
iii) f has a saddle point at (a, b) if $f_{x x} f_{y y}-f_{x y}^{2}<0$ at (a, b).
iv) the test is inconclusive at (a, b) if $f_{x x} f_{y y}-f_{x y}{ }^{2}=(0)$ at (a, b). In this case, we must find some other way to determine the behavior of f at (a, b).

The expression $f_{x x} f_{y y}-f_{x y}{ }^{2}$ is called the discriminant or Hessian of f. It is sometimes easier to remember it in determinant form,
$f_{x}=0, f_{y}=0 \Rightarrow \ldots$

$$
\Delta(x, y)=\underbrace{f_{x x} f_{y y}-f_{x y}^{2}}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right| .
$$

$$
\overbrace{f_{x \lambda}>0}^{\Delta>0} \quad \begin{array}{lll}
\Delta=0 & \Delta<0 \\
f_{x x}<0 & \begin{array}{l}
\text { tent } \\
\text { fails }
\end{array} & \begin{array}{l}
\text { saddle } \\
\text { poi }
\end{array}
\end{array}
$$

min.
max
\qquad Find the local extreme values of the function

$$
f(x, y)=x y-x^{2}-y^{2}-2 x-2 y+4
$$

sol.

$$
\begin{align*}
& f_{x}=y-2 x-2=0 \Rightarrow y-2 x=2 \\
& f_{y}=x-2 y-2=0 \Rightarrow x-2 y=2 \tag{2}
\end{align*}
$$

$\left(\right.$ sima f is difflble for all $\left.(x, y) \Rightarrow f_{x}+f y\right)$
exists.

$$
\begin{aligned}
& 2 y-4 x=4 \\
& x-2 y=2 \\
& \text { Add }-3 x=6 \Rightarrow x=-2 \quad \text { eq (1) }
\end{aligned} \begin{aligned}
& y+4=2 \\
& y=-2
\end{aligned}
$$

the only critical point is $(-2,-2)$.

$$
\begin{aligned}
& \text { D }(x, y)=f_{x x} f_{y y}-f_{x y}^{2} \\
& =(-2)(-2)-(1)^{2}=3 . \\
& \therefore D(-2,-2)=3>0 \\
& f_{x x}(-2,-2)=-2<0
\end{aligned}
$$

\Rightarrow f has a local max aft $(-2,-2)$ the value of f at this point is

$$
f(-2,-2)=8 \quad(\text { check }) \text {. }
$$

Example. Find the local extreme values of $f(x, y)=3 y^{2}-2 y^{3}-3 x^{2}+6 x y$.
Sol. $f_{x}=-6 x+6 y=0 \Rightarrow y=x$

$$
\begin{equation*}
f_{y}=6 y-6 y^{2}+6 x=0 \Rightarrow y-y^{2}+x=0 \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \text { (1) } \alpha \text { (2) } \Rightarrow x-x^{2}+x=0 \Rightarrow 2 x-x^{2}=0 \tag{2}\\
& x(2-x)=0 \Rightarrow x=00^{\text {or }} x=2 \\
& x=0 \stackrel{\text { eq }(1)}{\Rightarrow} y=0 \quad(0,0) \\
& x=2 \xrightarrow{\operatorname{eq}(1)} y=2 \quad(2,2) \\
& f_{x x}=-6, \quad f_{x y}=6, \quad f_{y y}=6-12 y \text {. } \\
& \Delta(x, y)=f_{x x} f_{y y}-f_{x y}^{2}=(-6)(6-12 y)-6^{2} \\
& =-72+72 y \text {. }
\end{align*}
$$

$D(0,0)=-72<0 \Rightarrow f$ hos a saddle point at $(0,0)$.

$$
\left\{\begin{array}{l}
\Delta(2,2)=-72+7 \\
f_{x x}(2,2)=-6<0
\end{array}\right.
$$

f has a local max. at $(2,2)$ and its value is $f(2,2)=8$ (check).

QQ) $\quad f(x, y)=\operatorname{Ln}(x+y)+x^{2}-y$.
Sol.

$$
\begin{align*}
& f_{x}=\frac{1}{x+y}+2 x=0 \ldots(1) \tag{1}\\
& f_{y}=\frac{1}{x+y}-1=0 \ldots \text { (2) } \\
& f q(1)-\left(-q(2): \quad 2 x+1=0 \Rightarrow x=-\frac{1}{2}\right. \\
& \\
& \text { from }\left(-q(2) \Rightarrow \frac{1}{y-\frac{1}{2}}=1 \Rightarrow y=3 / 2\right.
\end{align*}
$$

\therefore The Critical point is $\left(-\frac{1}{2}, \frac{3}{2}\right)$.

$$
\begin{aligned}
f_{x x} & =\frac{-1}{(x+y)^{2}}+2, \quad f_{y y}=\frac{-1}{(x+y)^{2}} \\
f_{x y} & =\frac{-1}{(x+y)^{2}} \\
f_{x x}\left(-\frac{1}{2}, \frac{3}{2}\right) & =1 \quad, f_{y y}\left(-\frac{1}{2}, \frac{3}{2}\right)=-1, f_{x y}\left(-\frac{1}{2} / \frac{3}{2}\right)=-1 \\
\therefore D\left(-\frac{1}{2}, \frac{3}{2}\right) & =f_{x x} f_{y y}-\left.f_{x y}^{2}\right|_{\left(-\frac{1}{2}, \frac{3}{2}\right)} \\
& =(1)(-1)-(-1)^{2}=-2<0
\end{aligned}
$$

$\therefore f$ has a saddle point at $\left(-\frac{1}{2}, \frac{3}{2}\right)$.
(23) $f(x, y)=y \sin x$.

$$
\begin{aligned}
& f_{x}=y \cos x=0 \ldots(1) \\
& \left.f_{y}=\sin x=0 \cdots, 2\right) \\
& E_{q}(2) \Rightarrow x=0, \pm \pi, \pm 2 \pi, \ldots \\
& x=n \pi, n=0, \pm 1, \pm 2, \ldots . \\
& x \neq y \cos (n \pi)=0 \\
& \quad \neq 0 \\
& y(-1)^{n}=0 \Rightarrow y=0
\end{aligned}
$$

\therefore the critical points are

$$
\begin{aligned}
& \quad(n \pi, 0), n=0, \pm 1, \pm 2, \ldots \\
& f_{x x}=-y \sin x, f_{y y}=0, f_{x y}=\cos x \\
& D(x, y)=f_{x x} f_{y y}-f_{x y}^{2} \\
& =(-y \sin x)(0)-\cos ^{2} x=-\cos ^{2} x \\
& D(n T, 0)=-\cos ^{2}(n \pi)=-1<0 \\
& \therefore \text { All }(n \pi, 0), n=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$ are Saddle points.

$$
\begin{aligned}
& \left.\quad Q_{24}\right) \quad f(x, y)=e^{2 x} \cos y . \\
& f_{x}=\frac{2 e^{2 x}}{} \cos y=0 \ldots(1) \Rightarrow \cos y=0 \\
& f_{y}=\frac{-e^{2 x}}{f_{0}} \sin y=0 \ldots(2) \Rightarrow \sin y=0
\end{aligned}
$$

\Rightarrow There is no critical points \Rightarrow "r r extreme values or Saddle points.
Q53) Find there numbers whose Sum is 9 and whose sum of Squares is a minimum.
Sol. $\operatorname{let} f(x, y, z)=x^{2}+y^{2}+z^{2}$
Given $x+y+z=9 \Rightarrow z=9-x-y$

$$
\begin{align*}
& h(x, y)=f(x, y, z)=x^{2}+y^{2}+(9-x-y)^{2} \\
& h_{x}=2 x+2(9-x-y)(-1) \\
& =2 x-18+2 x+2 y \\
& h_{x}=4 x+2 y-18=0 \Rightarrow 2 x+y=9 \\
& h_{y}=2 y+2(9-x-y)(-1) . \\
& =4 y+2 x-18=0 \Rightarrow x+2 y=9 \tag{2}
\end{align*}
$$

eq (1) + eq (2): $\quad 2 x+y=9$

$$
\frac{-2 x-4 y=-18}{-3 y=-9} \Rightarrow y=3 \Rightarrow \begin{aligned}
& 2 x+3=9 \\
& x=3
\end{aligned}
$$

151
Sunday, July 04, 2021
9:12 PM

$$
\begin{aligned}
& h_{x x}=4, h_{y y}=4, \quad h_{x y}=2 \\
& \begin{aligned}
\Delta(x, y)=h_{x x} h_{y y}-h_{x y}^{2} & =(4)(4)-2^{2} \\
& =12>0
\end{aligned} \\
& \begin{aligned}
D(3,3)=12>0 \\
h_{x x}(3,3)=4>0
\end{aligned} \Rightarrow h \text { has local } \\
& \text { min. at }(3,3) .
\end{aligned}
$$

and its value $h(3,3)=3^{2}+3^{2}+(9-3-3)^{2}$

$$
=27 .
$$

Absolute Maxima and Minima on Closed Bounded Regions
We organize the search for the absolute extrema of a continuous function $f(x, y)$ on a closed and bounded region R into three steps.

1. List the interior points of R where f may have local maxima and minima and evaluate f at these points. These are the critical points of f.
2. List the boundary points of R where f has local maxima and minima and evaluate f at these points. We show how to do this shortly.
3. Look through the lists for the maximum and minimum values of f. These will be the absolute maximum and minimum values of f on R. Since absolute maxima and minima are also local maxima and minima, the absolute maximum and minimum values of f appear somewhere in the lists made in Steps 1 and 2.

EXAMPLE 5 Find the absolute maximum and minimum values of

$$
f(x, y)=2+2 x+2 y-x^{2}-y^{2}
$$

on the triangular region in the first quadrant bounded by the lines $x=0, y=0 \quad y=9-x$.
Sol. Sketch the region.

$$
\begin{aligned}
& x=0 \Rightarrow y=9 \\
& y=0 \Rightarrow x=9
\end{aligned}
$$

- Interior Points: $f_{x}=2-2 x=0 \Rightarrow x=1$

$$
\begin{gathered}
f_{y}=2-2 y=0 \Rightarrow y=1 \\
(x, y)=(1,1) \in \text { Region. }
\end{gathered}
$$

Boundary points:

$$
\begin{gathered}
\overline{O A}: y=0,0 \leq x \leq 9 . \\
f(x, y)=f(x, 0)=2+2 x-x^{2} \\
x=0 \Rightarrow(0,0) \cdot \text { End points } \\
x=9 \Rightarrow(9,0) \\
\\
f^{\prime}(x, 0)=2-2 x=0 \Rightarrow x=1 \in[0,9] \\
(1,0)
\end{gathered}
$$

$$
\begin{array}{rl}
\overline{O B}: x=0 & 0 \leq y \leq 9 \\
f(0, y)= & 2+2 y-y^{2}
\end{array}
$$

te $(0,0),(0,9)$ Endpoints

$$
\begin{equation*}
f^{\prime}(0, y)=2-2 y=0 \Rightarrow y=1 \tag{0,1}
\end{equation*}
$$

$\overline{A B}: \quad y=9-x, \quad 0 \leq x \leq 9$

$$
\begin{aligned}
& x=0 \Rightarrow y=9(0,9) \\
& x=9 \Rightarrow y=0(9,0) \\
& f(x, y)=f(x, 9-x)=2+2 x+2(9-x)-x^{2} \\
& f-(9-x)^{2} \\
& \text { simplify. } \\
& \quad=-61+18 x-2 x^{2} \\
& f^{\prime}(x, 9-x)=18-4 x=0 \Rightarrow x=9 / 2 \Rightarrow y=9-\frac{9}{2}=-\frac{9}{2}
\end{aligned}
$$

$$
\left.\Rightarrow\left(\frac{9}{2}, \frac{9}{2}\right)\right)
$$

\therefore Summary.

$$
\begin{aligned}
& \begin{array}{l|l}
\text { Interior port }(x, y) & f(x, y)=2+2 x+2 y-x^{2}-y^{2} \\
\hline \text { (1, }) & f(1,1)=2+2+2-1-1=4
\end{array} \\
& (0,0) \\
& f(0,0)=2 \\
& (9,0) \quad f(9,0)=-61 \\
& (0,9) \quad f(0,9)=-61 \\
& (1,0) \quad f(1,0)=3 \\
& (0,1) \quad f(0,1)=3 \\
& \left(\frac{9}{2}, \frac{9}{2}\right) \quad f\left(\frac{9}{2}, \frac{9}{2}\right)=-\frac{41}{2} .
\end{aligned}
$$

The absolute max. is 4 occurs at $(1,1)$
the absolute min. is -61 occurs at

$$
(0,9) \text { and }(9,0)
$$

Constrained Maxima and Minima

EXAMPLE 1 Find the point $P(x, y, z)$ on the plane $2 x+y-z-5=0$ that is closest to the origin. $O(0,0,0)$
Sol. The problem is to find the min. value of tho function

$$
\begin{aligned}
& |\overrightarrow{O p}|=\sqrt{(x-0)^{2}+(y-0)^{2}+(z-0)^{2}} \\
& d(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}
\end{aligned}
$$

Subject to the constraint $2 x+y-z=5$
First, find the win. of

$$
\begin{gather*}
f(x, y, z)=x^{2}+y^{2}+z^{2} \\
h(x, y)=x^{2}+y^{2}+(2 x+y-5)^{2} \\
h_{x}=2 x+2(2 x+y-5)(2)=0 \\
10 x+4 y=20 \tag{1}\\
5 x+2 y=10 \\
h_{y}= \\
2 y+2(2 x+y-5)(1)=0 \\
4 x+4 y=10 \\
2 x+2 y=5
\end{gather*}
$$

From (1) $\&(2) \Rightarrow x=\frac{5}{3}, y=\frac{5}{6}$ (check)
the critical value $\left(\frac{5}{3}, \frac{5}{6}\right)$

$$
\begin{gathered}
h_{x x}=10, h_{y y}=4, h_{x y}=2 \\
D(x, y)=h_{x x} h_{y y}-h_{x y}^{2}=40-4=36 \\
\left.D\left(\frac{5}{3}, \frac{5}{6}\right)=36>0\right\rangle \Rightarrow h \text { is mix } \\
h_{x x}\left(\frac{5}{3}, \frac{5}{6}\right)=10>0 \quad \text { at }\left(\frac{5}{3}, \frac{5}{6}\right) \\
z=2 x+y-5 \\
=2\left(\frac{5}{3}\right)+\frac{5}{6}-5=-\frac{5}{6}
\end{gathered}
$$

closet point: $P\left(\frac{5}{3}, \frac{5}{6},-\frac{5}{6}\right)$.
closet distance from P to $O(0,0,0)$

$$
\text { is } \begin{aligned}
\sqrt{\frac{25}{9}+\frac{25}{36}+\frac{25}{36}} & =\frac{\sqrt{150}}{6} \\
& =\frac{\sqrt{25(6)}}{6} \\
& =\frac{5 \sqrt{6}}{6}=\frac{5}{\sqrt{6}} .
\end{aligned}
$$

The Method of Lagrange Multipliers
The Method of Lagrange Multipliers

Suppose that $f(x, y, z)$ and $g(x, y, z)$ are differentiable and $\nabla g \neq 0$ when $g(x, y, z)=0$. To find the local maximum and minimum values of f subject to the constraint $g(x, y, z)=0$ (if these exist), find the values of x, y, z, and λ that simultaneously satisfy the equations

$$
\begin{equation*}
\nabla f=\lambda \nabla g \quad \text { and } \quad g(x, y, z)=0 \tag{1}
\end{equation*}
$$

For functions of two independent variables, the condition is similar, but without the variable z.

EXAMPLE 3 Find the greatest and smallest values that the function

$$
f(x, y)=x y
$$

takes on the ellipse (Figure 14.52)

$$
\begin{aligned}
& \text { Sol. } f(x, y)=x y, \quad g(x, y)=\frac{x^{2}}{8}+\frac{y^{2}}{2}=1 . \frac{y^{2}}{2}-1=0
\end{aligned}
$$

cot $\nabla f=\lambda \nabla g$

$$
\begin{aligned}
& f_{x} i+f_{y j}=\lambda\left(g_{x} i+g_{y j}\right) \\
& y_{i}+x j=\lambda\left(\frac{x}{4} i+y_{j}\right)
\end{aligned}
$$

(2) into (1): $y=\lambda_{y}(\lambda y) \Rightarrow 4 y-\lambda^{2} y=0$

$$
\begin{aligned}
& y\left(4-\lambda^{2}\right)=0 \\
& y=0 \text { or } \lambda= \pm 2
\end{aligned}
$$

Casel $y=0 \xrightarrow{\text { eq(2) }} \quad x=\lambda(0)=0$
$(0,0)$ reject $\sin e$

$$
\frac{0^{2}}{8}+\frac{0^{2}}{2} \neq 1 \text {. }
$$

Case $2 \quad \lambda=2 \quad \stackrel{2 q \sqrt{2}}{\Rightarrow} x=2 y$

$$
\begin{array}{r}
\stackrel{\text { eq.(3) }}{=} \frac{(2 y)^{2}}{8}+\frac{y^{2}}{2}=1 \\
\\
y^{2}=1 \Rightarrow y=t 1 \\
y=1 \Rightarrow x=2 \quad(2,1) \\
y=-1 \Rightarrow x=-2 \\
(-2,-1)
\end{array}
$$

Case $3 \quad \lambda=-2 \Rightarrow x=-2 y$

$$
\begin{aligned}
& \text { eq(3) } \\
& \Rightarrow \frac{(-2 y)^{2}}{8}+\frac{y^{2}}{2}=1 \\
& y^{2}=1 \Rightarrow y=+-1 \\
& y=1 \quad \Rightarrow x=-2 \quad(-2,1) \\
& y=-1 \quad \Rightarrow x=2 \quad(2,-1) \\
& \begin{array}{c|c|c|c|c}
(x, y) & (2,1) & (-2,-1) & (-2,1) & (2,-1) \\
\hline f(x, y)=x y & 2 & 2 & -2 & -2
\end{array}
\end{aligned}
$$

abs. max. value $=2$ occurs at $(2,1)$ and $(-2,-1)$
abs. min. value $=-2$ occurs at $(2,-1)$ and $(-2,1)$.
Ex. Find the max. and min. of $f(x, y)=x y$

$$
\text { on } \quad \frac{x^{2}}{8}+\frac{y^{2}}{2} \leq 1
$$

Sal. Interior points:

$$
\begin{aligned}
& f_{x}=y=0 \\
& f_{y}=x=0
\end{aligned} \quad(0,0) \in \text { Region. } \frac{0^{2}}{8}+\frac{0^{2}}{2} \leq 1
$$

Boundary Points $\frac{x^{2}}{8}+\frac{y^{2}}{2}=1 \quad$ (Lagrange)

$$
\begin{aligned}
& \nabla f=\lambda \nabla g \text { (see the lastex.). } \\
& (2,1),(-2,-1),(2,-1),(-2,1) \text {. } \\
& \begin{array}{c|c|c|c|c|c}
\text { Interior } \\
\hline(x, y) & (0,0) & \\
\hline f(x, y) & 0 & 2 & 2 & -2) & -2
\end{array} \\
& \text { Abs. max }=2 \text { occurs d } \begin{array}{r}
(2,1) \text { and } \\
(-2,-1)
\end{array} \\
& \text { Abs. min }=-2 \quad=(2,-1) \text { and } \\
& (-2,1) \text {. }
\end{aligned}
$$

Ex. Find the max. and min.

$$
\text { of } f(x, y, z)=x-2 y+5 z \text { on }
$$

the sphere $x^{2}+y^{2}+z^{2} \Theta 30$.
Sol. Let $g(x, y, z)=x^{2}+y^{2}+z^{2}-30=0$
o let $\nabla f=\lambda \nabla g$

$$
i-2 j+5 k=\lambda(2 x i+2 y j+2 z k)
$$

$$
\Rightarrow \begin{cases}2 x \lambda=1 & \text { Notice that } \lambda \neq 0 \\ 2 y \lambda=-2 & (1) x=\frac{1}{2 \lambda} \\ 2 \lambda z=5 & (3) y=-\frac{1}{\lambda} \\ x^{2}+y^{2}+z^{2}=30 & 4 z=\frac{5}{2 \lambda}\end{cases}
$$

put x, y, z into eq (4):

$$
\begin{gathered}
\left(\frac{1}{2 \lambda}\right)^{2}+\left(\frac{-1}{\lambda}\right)^{2}+\left(\frac{5}{2 \lambda}\right)^{2}=30 \\
\frac{1}{4 \lambda^{2}}+\frac{1}{\lambda^{2}}+\frac{25}{4 \lambda^{2}}=30 \\
\frac{30}{4 \lambda^{2}}=30 \Rightarrow \lambda= \pm \frac{1}{2} \\
\lambda=\frac{1}{2} \Rightarrow x=\frac{1}{2\left(\frac{1}{2}\right)}=1, \quad y=\frac{-1}{1 / 2}=-2 \\
\Rightarrow \lambda=-\frac{1}{2} \Rightarrow P_{2}(-1,2,-5) .
\end{gathered}
$$

$$
\begin{aligned}
& f\left(p_{1}\right)=f(1,-2,5) \\
&=1-2(-2)+5(5)=30 \\
& f\left(P_{2}\right)=f(-1,2,-5)=-1-2(2)+5(-5) \\
&=-30
\end{aligned}
$$

Abs-max $=30$ occurs at $(1,-2,5)$.

$$
\text { y) min }=-30 \quad=(-1,2,-5) \text {. }
$$

Ex. Find the extreme values of

$$
f(x, y, z)=x y+z^{2} \quad \text { subject to }
$$

the Constraint: $x^{2}+y^{2}+z^{2}=1$
Sol. Let $g(x, y, z)=x^{2}+y^{2}+z^{2}-1=0$.
let $\nabla f=\lambda \nabla g$

$$
\begin{aligned}
& y i+x j+2 z k=\lambda(2 x i+2 y j+2 z k) \\
& \left\{\begin{array}{l}
y=2 x \lambda \\
x=2 y \lambda \\
2 z=2 z \lambda \\
x^{2}+y^{2}+z^{2}=1
\end{array}\right.
\end{aligned}
$$

put (2) into (1): $y=2(2 y \lambda) \lambda$

$$
y-4 y \lambda^{2}=0 \Rightarrow y\left(1-4 \lambda^{2}\right)=0
$$

Casel $y=0 \quad x=0$

$$
\begin{array}{cc}
x=0, y=0 \stackrel{4}{\longrightarrow} \tag{4}\\
P_{1}(0,0,1) \\
z=1 \\
z_{2}(0,0,-1) &
\end{array}
$$

Care $2 \lambda=\frac{-1}{2}$ eq (1) or (2) $\Rightarrow y=-x$

$$
\text { eq(3) } 2 z=-z \Rightarrow 3 z=0
$$

$$
z=0
$$

e(f4) $\quad x^{2}+y^{2}+z^{2}=1$

$$
\begin{array}{ll}
x=\frac{1}{\sqrt{2}}, y=-\frac{1}{\sqrt{2}} & P_{3}\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right) \\
x=-\frac{1}{\sqrt{2}}, y=\frac{1}{\sqrt{2}} & P_{4}\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) .
\end{array}
$$

Case3 $\lambda=\frac{1}{2}$ eq (1) $r(2) \Rightarrow y=x$

$$
\operatorname{lq}(3 \quad 2 z=z \Rightarrow z=0
$$

eq(4) $x^{2}+y^{2}+z^{2}=1$

$$
\begin{aligned}
& x=\frac{1}{\sqrt{2}} \Rightarrow y=\frac{1}{\sqrt{2}} \quad P_{5}\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) \\
& x=\frac{-1}{\sqrt{2}}, y=-\frac{1}{\sqrt{2}} \quad P_{6}\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right) .
\end{aligned}
$$

Summary.

$$
\begin{array}{c|c}
(x, y, z) & f(x, y, z)=x y+z^{2} \\
\hline(0,0,1) & 1 \\
(0,0,-1) & 1 \\
\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) & +\frac{1}{2} \\
\left(\frac{-1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right) & +\frac{1}{2} \\
\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right) & -\frac{1}{2} \\
\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) & -\frac{1}{2}
\end{array}
$$

absol. max $=1$ occurs at $(0,0, \pm 1)$
Albs. min. $=-\frac{1}{2}=-\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)$

$$
\operatorname{and}\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) \text {. }
$$

MULTIPLE INTEGRALS

15.1 Double and Iterated Integrals over, Rectangles

Double Integrals

The double integral of f over R, written as

$$
\begin{aligned}
& \text { over } R \text {, written as } \\
& \iint_{(R)} f(x, y) d x d y \text { or } d y d x \\
& \text { Region in } \iint_{R} f(x, y) d x d y . \\
& \text { xy-plane }
\end{aligned}
$$

Double Integrals as Volumes

Volume $\left.=\lim _{n \rightarrow \infty} S_{n}=\iint_{(\Omega)} f(x, y)\right) d A$, where $\left(\triangle A_{2}\right) \rightarrow$ (0) as $n \rightarrow \infty$.

If $f(x, y)=1$

$$
\iint_{R} d A=\text { Area of } R \text {. }
$$

FIGURE 15.2 Approximating solids with rectangular boxes leads us to define the volumes of more general solids as double integrals. The volume of the solid shown here is the double integral of $f(x, y)$ over the base region R.

THEOREM 1—Fubini's Theorem (First Form) If $f(x, y)$ is continuous throughout y the rectangular region R : $a \leq x \leq b, c \leq y \leq d$, then

$$
\begin{aligned}
& \begin{array}{l}
\iint_{R} f(x, y) d A=\int_{c}^{d} \frac{\int_{a}^{b} f(x, y) d x}{k(y)} d y=\int_{a}^{b} \int_{c}^{d} k(y) d y \\
\text { Calculate } \iint_{R}^{d} f(x, y) d A \text { for } 1 \\
f(x, y)=100-6 x^{2} y \quad \text { and } \quad R: \quad 0 \leq x \leq 2, \quad-1 \leq y \leq 1 .
\end{array} \\
& \text { EXAMPLE } 1 \text { Calculate } \iint_{R} f(x, y) d A \text { for }
\end{aligned}
$$

$$
\begin{aligned}
I & =\iint_{R} f(x, y) d A \\
& =\int_{0}^{2} \int_{-1}^{1}\left(100-6 x^{2} y\right) d y d x \\
& =\int_{0}^{2} 100 y-6 x^{2} \frac{y^{2}}{2} \\
& =\int_{y=-1}^{2}\left[\left(100-3 x^{2}\right)-\left(-100-3 x^{2}\right)\right] d x \\
& =\int_{0}^{2} 200 d x=\left.200 x\right|_{0} ^{2}=400
\end{aligned}
$$

EXAMPLE 2 Find the volume of the region bounded above by the ellipitical paraboloid $z=10+x^{2}+3 y^{2}$ and below by the rectangle $R: 0 \leq x \leq 1,0 \leq y \leq 2$.

$$
\begin{aligned}
\text { Volume } & =\iint_{R} f^{z}(x, y) d A \\
& =\int_{0}^{2} \int_{0}^{1}\left(10+x^{2}+3 y^{2}\right) d x d y
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\int_{0}^{2}\left(10 x+\frac{x^{3}}{3}+3 y^{2} x\right)\right|_{x=0} ^{x=1} d y \\
& =\int_{0}^{2}\left(10+\frac{1}{3}+3 y^{2}\right)-(0) d y \\
& =\int_{0}^{2}\left(\frac{31}{3}+3 y^{2}\right) d y \quad(\text { Cal } 1) \\
& =\frac{31}{3} y+\left.y^{3}\right|_{0} ^{2}=\left(\frac{31}{3}(2)+8\right)-(0) \\
& =\frac{62}{3}+8=\frac{86}{3} \\
& \text { 15. } I=\iint_{R} x y \cos y d A, \quad R: \quad-1 \leq x \leq 1, \quad 0 \leq y \leq \pi \\
& I=\int_{0}^{R} \int_{-1}^{\pi} x y \cos y d x d y \\
& =\left.\int_{0}^{\pi} \frac{x^{2}}{2} y \cos y\right|_{x=-1} ^{x=1} d y \\
& =\int_{0}^{\pi}\left(\frac{1}{2} y \cos y-\frac{1}{2} y \cos y\right) d y \\
& =\int_{0}^{\pi} 0 d y=0
\end{aligned}
$$

$$
\begin{aligned}
& I 8 I=\iint_{R} x y e^{x y^{2}} d A, \quad R: 0 \leq x \leq 2,0 \leq y \leq 1 \\
& I=\int_{0}^{2} \int_{0}^{1} \int_{0}^{1} x y e^{\left(x y^{2}\right)} d y d x \\
& \frac{d u}{d y}=2 x y \Rightarrow \frac{1}{2} d u=x y d y \\
& y=0 \Rightarrow u=0 \\
& y=1 \Rightarrow u=x(1)^{2}=x \\
&=\int_{0}^{2}\left(\int_{0}^{x} \frac{1}{2} e^{u} d u\right) d x \\
&=\left.\int_{0}^{2} \frac{1}{2} e^{u}\right|_{0} ^{x} d x \\
&=\int_{0}^{2} \frac{1}{2}\left(e^{x}-1\right) d x \\
&=\left.\frac{1}{2}\left(e^{x}-x\right)\right|_{0} ^{2}=\frac{1}{2}\left(e^{2}-2\right)-\frac{1}{2}(1-0) \\
&=\frac{1}{2} e-\frac{3}{2}=\frac{e-3}{2} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { 19. } E \iint_{\int_{R}}^{\frac{x y^{3}}{x^{2}+1} d A, \quad R: \quad 0 \leq x \leq 1,0 \leq y \leq 4} \\
&=\left.\int_{0}^{\int_{0}^{4}} \frac{x y^{3}}{x^{2}+1} d y\right|_{0} ^{y=4} d x \\
&=\left.\int_{0}^{1} \frac{x}{x^{2}+1} \cdot \frac{y^{4}}{4}\right|_{y=0} ^{4} d x \\
&= \int_{0}^{1} \frac{x}{x^{2}+1}\left(\frac{4}{4}-\frac{0}{4}\right) d x \\
&= 32 \int_{0}^{1} \frac{2 x}{x^{2}+1} d x\left(\left.\ln \left(x^{2}+1\right)\right|_{0} ^{1}\right. \\
&=32 \\
&=32(\ln 2-\ln 1)=32 \ln 2
\end{aligned}
$$

27. Find the volume of the region bounded above by the surface $z=2 \sin x \cos y$ and below by the rectangle $R: 0 \leq x \leq \pi / 2$, $0 \leq y \leq \pi / 4$.

Sol.

$$
\begin{aligned}
\text { Volume } & =\iint_{R} z d A \\
& =\int_{0}^{\frac{\pi}{4}} \int_{0}^{\pi / 2} 2 \sin x \cos y d x d y
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\pi / 4}-\left.2 \cos x \cos y\right|_{x=0} ^{x=\frac{\pi}{2}} d y \\
& =\int_{0}^{\pi / 4}\left(-2 \cos \frac{\pi}{2} \cos y+2 \cos 0 \cos y\right) d y \\
& =\int_{0}^{\pi / 4} 2 \cos y d y=\left.2 \sin y\right|_{0} ^{\pi / 4} \\
& =2 \sin \frac{\pi}{4}-2 \sin 0 \\
& =\frac{2 \sqrt{2}}{2}=\sqrt{2} \text {. }
\end{aligned}
$$

Double Integrals over Bounded, Nonrectangular Regions

THEOREM 2—Fubini's Theorem (Stronger Form)
Let $f(x, y)$ be continuous on a region R.

1. If R is defined by $a \leq x \leq b, / g_{1}(x) \leq y \leq g_{2}(x)$, with g_{1} and g_{2} continuous on $[a, b]$, then

$$
\iint_{R} f(x, y) d A=\left(\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y\right) d x .
$$

2. If R is defined by $c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)$, with h_{1} and h_{2} continuous on $[c, d]$, then

$$
\iint_{R} f(x, y) d A=\iint_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) \underset{\sim d y .}{<}
$$

EXAMPLE 1 Find the volume of the prism whose base is the triangle in the $x y$-plane bounded by the x-axis and the lines $y=x$ and $x=1$ and whose top lies in the plane

$$
z=f(x, y)=3-x-y
$$

Sol. Sketch the region of integration

$$
R: \quad x \text {-axis }, y=x, x=1
$$

$$
\text { ration } \underbrace{\substack{(3,0,0)}}_{(1,0,0)}
$$

$$
\begin{aligned}
\text { volume } & =\iint_{R} f(x, y) d A \\
& =\int_{0}^{1} \int_{0}^{x}(3-x-y) d y \mid x
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\int_{0}^{1}\left((3-x) y-\frac{y^{2}}{2}\right)\right|_{y=0} ^{y=x} d x \\
& =\int_{0}^{1}\left[\left((3-x) x-\frac{x^{2}}{2}\right)-(0-0)\right] d x \\
& =\int_{0}^{1}\left(3 x-\frac{3}{2} x^{2}\right) d x=\left.\left(\frac{3 x^{2}}{2}-\frac{x^{3}}{2}\right)\right|_{0} ^{1} \\
0 R \quad V & =\int_{0}^{1} \int_{y}^{1}(3-x-y) d x d y=\frac{3}{2}=1 \\
& =\left.\int_{0}^{1}\left(3 x-\frac{x^{2}}{2}-y x\right)\right|_{x=y} ^{x=1} d_{0}^{y} x=y \\
& =\int_{0}^{1}\left[\left(3-\frac{1}{2}-y\right)-\left(3 y-\frac{y^{2}}{2}-y^{2}\right)\right] d y \\
& =\int_{0}^{1}\left(\frac{5}{2}-4 y+\frac{3}{2} y^{2}\right) d y \\
& =\left.\left(\frac{5}{2} y-2 y^{2}+\frac{1}{2} y^{3}\right)\right|_{0} ^{1}=\frac{5}{2}-2+\frac{1}{2}
\end{aligned}
$$

EXAMPLE 2 Calculate

$$
\iint_{R} \frac{\sin x}{x} d A
$$

where R is the triangle in the $x y$-plane bounded by the x-axis, the line $y=x$, and the line $X=2$

Sol.

$$
\begin{aligned}
\int_{R} \int_{R}^{\sin x} \frac{x}{x} d A & =\int_{0}^{y} \int_{0}^{x} \frac{\sin x}{x} d y d x \\
& =\left.\left.\int_{0}^{2} \frac{\sin x}{x} \cdot y\right|_{y=0} ^{y}\right|_{0} ^{y=x} \\
& =\int_{0}^{2}\left(\frac{\sin x}{x} \cdot x-0\right) d x \\
& =\int_{0}^{2} \sin x d x=-\left.\cos x\right|_{0} ^{2} \\
&
\end{aligned}
$$

Ex. Evaluate the integral

$$
\int_{0}^{3} \int_{\sqrt{\frac{x}{3}}}^{1} e^{y^{3}} d y d x
$$

Sol. Sketch the region of integration.
Reverse the order of c.

- Evaluate.

Now, $\quad 0 \leqslant x \leqslant 3, \quad \sqrt{\frac{x}{3}} \leqslant y \leq 1$

$$
\begin{aligned}
& I= \int_{0}^{1} \int_{0}^{3 y^{2}} e^{y^{3} d x} d y \quad \sqrt{\frac{x}{3}}=1 \\
&=\left.\int_{0}^{1} x e^{y^{3}}\right|_{x=0} ^{x=3 y^{2}} d y=\int_{0}^{1} 3 y^{2} e^{y^{3}} d y \\
& u=y^{3} \\
& d u=3 y^{2} d y \\
& y=0 \Rightarrow u=0 \\
& y=1 \Rightarrow u=1
\end{aligned}
$$

54. $\int_{0}^{8} \int_{\sqrt[3]{x}}^{2} \frac{d y d x}{y^{4}+1}$
$0 \leq x \leq 8$

$$
\sqrt[3]{x} \leq y \leq 2
$$

$$
\begin{aligned}
& I=\int_{0}^{2} \int_{0}^{y^{3}} \frac{1}{y^{4}+1}(d x) d y \\
& =\left.\int_{0}^{2} \frac{x}{y^{4}+1}\right|_{x=0} ^{x=y^{3}} d y=\frac{1}{4} \int_{0}^{2} \frac{4 y^{3}}{y^{4}+1} d y \\
& \\
& =\left.\frac{1}{4} \ln \left(y^{4}+1\right)\right|_{0} ^{2} \\
& \\
& =\frac{1}{4} \ln 17 .
\end{aligned}
$$

50. $\int_{0}^{2} \int_{0}^{4-x^{2}} \frac{x e^{2 y}}{4-y} d y d x$

$$
\begin{aligned}
& 0 \leq y \leq 4-x^{2}, \quad 0 \leq x \leq 2 \\
& y=0, y=4-x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& I=\int_{0}^{4} \int_{0}^{\sqrt{4-y}} \frac{x e^{2 y}}{4-y} d x d y \\
&=\left.\int_{0}^{4} \frac{x^{2}}{2} \frac{e^{2 y}}{4-y}\right|_{x=0} ^{x=\sqrt{4-y}} d y \\
&=\frac{1}{2} \int_{0}^{4}(\sqrt{4-y})^{2} \frac{e^{2 y}}{4-y} d y \\
&=\frac{1}{2} \int_{0}^{4} e^{2 y} d y=\left.\frac{1}{4} e^{2 y}\right|_{0} ^{4} \\
&=\frac{e^{8}-1}{4}
\end{aligned}
$$

EXAMPLE 4 Find the volume of the wedgelike solid that lies beneath the surface $z=$
$16-x^{2}-y^{2}$ and above the region R bounded by the curve $y=2 \sqrt{x}$, the line $y=4 x-2$ and the x-axis.

$$
\text { Sol. } f(x, y)=16-x^{2}-y^{2}
$$

$$
V=\int_{0}^{2} \int_{y^{2}}^{\frac{y+2}{4}}\left(16-x^{2}-y^{2}\right) d x d y
$$

$$
\nabla R=\int_{0}^{\frac{1}{2}} \int_{0}^{2}\left(16-x^{2} \int_{\frac{1}{2}}^{4} \int_{4}^{2}\left(16-2 x^{2}-y^{2}\right) d y d x\right.
$$

The area of a closed, bounded plane region R is

$$
A=\iint_{R} \mid d A
$$

EXAMPLE 1 Find the area of the region R bounded by $y=x$ and $y=x^{2}$ in the first quadrant.

$$
\begin{aligned}
\text { Area } & =\int_{R} d A \\
& =\int_{0}^{1} \int_{x^{2}}^{x} 1 d y d x \\
& =\left.\int_{0}^{1} y\right|_{y=x^{2}} ^{y=x} d x=\int_{0}^{1}\left(x^{2}-x^{2}\right) d x \text { call } \\
& =\frac{x^{2}}{2}-\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}
\end{aligned}
$$

EXAMPLE 2 Find the area of the region R enclosed by the parabola $y=x^{2}$ and the line $y=x+2$.

$$
\begin{aligned}
\text { Area } & =\iint_{R} d A \\
& =\int_{-1}^{2} \int_{1}^{x+2} d y d x \\
& =\int_{-1}^{2}\left(x+2-x^{2}\right) d x=\cdots \quad \begin{array}{l}
x \\
x^{2}=x+2 \\
x^{2}-x-2=0 \\
(x-2)(x+1)=0 \\
x=2, x=-1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 178 \\
& \text { sunday, July } 04,2021 \\
& \text { a:10 PM }
\end{aligned} \quad \text { Average Value } \quad \int_{R}
$$

EXAMPLE 3 Find the average value of $f(x, y)=x \cos x y$ over the rectangle $R: 0 \leq x \leq \pi, 0 \leq y \leq 1$.
Sol:. Area $=\iint_{R} d A=\int_{0}^{\pi} \int_{0}^{1} d y d x=\left.\int_{0}^{\pi} y\right|_{y=0} ^{y=1} d x=\int_{0}^{\pi} \mid d x$

$$
\begin{aligned}
& \text { Ares }=(\text { length })(\text { width })=(\pi-0)(1-0)^{\circ} \\
& \text { - Volume }=\iint_{R} f(x, y) d A=\iint_{0}^{T} x \cos (x, y) d y d x \\
& =\left.\int_{0}^{\pi} x \frac{\sin (x y)}{x}\right|_{y=0} ^{y=1} d x \\
& =\int_{0}^{\pi} \sin x d x=-\left.\cos x\right|_{0} ^{\pi} \\
& =-\cos t+\cos 0 \\
& =2
\end{aligned}
$$

\therefore Average value of f over R is

$$
=\frac{1}{A} \iint_{R} f(x, y) d A=\frac{1}{\pi}(2)=\frac{2}{\pi}
$$

Ex. Find the average value of $f(x, y)=12 y^{3} e^{x^{3}}$ over the region
$R: \quad y^{2} \leq x \leq 2, \quad 0 \leq y \leq \sqrt{2}$.

$$
x=y^{2}, x=2
$$

$$
\begin{aligned}
& \text { Sol. } \\
& \text { - Area }=\int_{0}^{2} \int_{0}^{\sqrt{x}} d y d x \\
& =\int_{0}^{2} \sqrt{x} d x=\left.\frac{2}{3} x^{3 / 2}\right|_{0} ^{2} \\
& =\frac{2}{3}(2)^{3 / 2}=\frac{4 \sqrt{2}}{3} \\
& \begin{array}{c}
y \\
\hline \\
\hline
\end{array} \\
& \begin{aligned}
\text { Volume } & =\int_{0}^{2} \int_{0}^{\int_{0}^{\sqrt{x}} 12 y^{3} e^{x^{3}} d y d x} \\
& =\left.\int_{0}^{2} 3 y^{4} e^{x^{3}}\right|_{y=0} ^{y=\sqrt{x}} d x
\end{aligned} \\
& =\int_{0}^{2} 3 x^{2} e^{x^{3}} d x \quad \begin{array}{l}
u=x^{3} \\
d u=3 x^{2} d x
\end{array} \\
& =\int_{0}^{8} e^{u} d u \\
& x=0 \Rightarrow u=0 \\
& x=2 \Rightarrow u=8 \\
& =\left.e^{u}\right|_{s} ^{8}=e^{8}-1
\end{aligned}
$$

\therefore Average value of f over R is

$$
\frac{1}{\text { Area }} \iint_{R} f(x, y) d A=\frac{3}{4 \sqrt{2}}\left(e^{8}-1\right)
$$

15.4 $\begin{aligned} & \text { Double Integrals in Polar Form } \\ & \end{aligned}$

Integrals in Polar Coordinates

FIGURE 15.21 The region $R: g_{1}(\theta) \leq r \leq g_{2}(\theta), \alpha \leq \theta \leq \beta$, is contained in the fanshaped region $Q: 0 \leq r \leq a, \alpha \leq \theta \leq \beta$. The partition of Q by circular arcs and rays induces a partition of R.

$$
\theta=\alpha, \quad \theta=\alpha+\Delta \theta, \quad \theta=\alpha+2 \Delta \theta, \quad \ldots, \quad \theta=\alpha+m^{\prime} \Delta \theta=\beta
$$

where $\Delta \theta=(\beta-\alpha) / m^{\prime}$. The arcs and rays partition Q into small patches called "polar rectangles."

$$
\begin{aligned}
& S_{n}=\sum_{k=1}^{n} \tilde{r}_{\left.r_{k} \theta_{2}\right)}\left(\square A_{k}\right) D r_{k} D \theta_{k} \\
& \lim _{n \rightarrow \infty} s_{n}=\iint_{R} f(r, \theta)(d .4 . \\
& d A=r d r d \theta
\end{aligned}
$$

The area of a wedge-shaped sector of a circle having radius r and angle θ is

$$
A=\frac{1}{2}(\theta) \cdot r^{2},
$$

8

Inner radius: $\quad \frac{1}{2}\left(r_{k}-\frac{\Delta r}{2}\right)^{2} \Delta \theta$
Outer radius: $\quad \frac{1}{2}\left(r_{k}+\frac{\Delta r}{2}\right)^{2} \Delta \theta$.

$$
\frac{1}{2} \theta^{2} r^{2}
$$

$$
\begin{aligned}
\Delta A_{k} & =\underline{\text { area of large sector }}-\underline{\text { area of small sector }} \\
& =\left(\frac{\Delta \theta}{2}\right)\left[\left(r_{k}+\frac{\Delta r}{2}\right)^{2}-\left(r_{k}-\frac{\Delta r}{2}\right)^{2}\right]=\frac{\Delta \theta}{2}\left(2 r_{k} \Delta r\right)=r_{k} \Delta r \Delta \theta
\end{aligned}
$$

As $n \rightarrow \infty$ and the values of Δr and $\Delta \theta$ approach zero, these sums converge to the double integral

$$
\left.\begin{array}{r}
\lim _{n \rightarrow \infty} S_{n}=\iint_{R} f(r, \theta) r d r d \theta \cdot d x d y d d y d x \\
x=r \cos \theta \\
y=r \sin \theta \\
x^{2}+y^{2}=r^{2}
\end{array}\right\}
$$

Finding Limits of Integration

1. Sketch. Sketch the region and label the bounding curves (Figure 15.23a).
2. Find the r-limit ry of integration. Imagine a ray L from the origin cutting through R in the direction of increasing r. Mark the r-values where L enters and leaves \bar{R}. These are the r-limits of integration. They usually depend on the angle θ that L makes with the positive x-axis (Figure 15.23b).
3. Find the θ-limits of integration. Find the smallest and largest θ-values that bound R. These are the θ-limits of integration (Figure 15.23 c). The polar iterated integral is

$$
\frac{\theta_{1}}{\sqrt{2}}{ }^{\sqrt{2}} \quad \tan \theta_{1}=\frac{\sqrt{2}}{\sqrt{2}}=1 \Rightarrow \theta=\frac{\pi}{4}
$$

EXAMPLE 1 Find the limits of integration for integrating $f(r, \theta)$ over the region R that lies inside the cardioid $r=1+\cos \theta$ and outside the circle $r=1$.

$$
\begin{gathered}
1 \leq r \leq 1+\cos \theta \\
\theta: 1+\cos \theta=1 \\
\cos \theta=0 \\
\theta= \pm \frac{\pi}{2} \\
-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \pi / 2 \\
\iint_{R}^{\pi} f(x, y) d A=\int_{-\frac{\pi}{2}}^{1+\cos \theta}
\end{gathered}
$$

The area of a closed and bounded region R in the polar coordinate plane is

$$
A=\iint r d r d \theta .
$$

$$
A \operatorname{sen}=\iint_{R} d A
$$

Changing Cartesian Integrals into Polar Integrals

$$
\iint_{R} f(x, y) d x d y=\iint_{G} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

\qquad
EXAMPLE 3 Evaluate

$$
I=\iint_{R} e^{x^{2}+y} d y d x ., \quad y^{2}=1-x^{2} \Rightarrow x^{2}+y^{2}=1
$$

where R is the semicircular region bounded by the x-axis and the curve $y=\sqrt{1-x^{2}}$

$$
\begin{aligned}
& I=\int_{0}^{\pi} \int_{0}^{\pi} \frac{e^{r^{2}} r d r d \theta}{r=r^{2}} \\
&=\int_{0}^{r=1} \frac{1}{2} e^{r^{2}} \int_{r=0}^{\pi} d \theta=\int_{0}^{\pi} \frac{1}{2}(e-1) d \theta=\frac{\pi}{2}(e-1)
\end{aligned}
$$

Evaluate the integral

$$
\begin{aligned}
& I=\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(x^{2}+y^{2}\right) d y d x . \\
& 0 \leq y \leq \sqrt{1-x^{2}} \\
& 0 \leq r \leq 1 \\
& 0 \leq x \leq 1 \\
& 0 \leqslant \theta \leqslant \frac{\pi}{2} \\
& \therefore I=\int_{0}^{\pi / 2} \int_{0}^{1} r^{2} \cdot r d r d \theta \\
& \xrightarrow[-1]{y^{2}=1-x^{2}} \\
& =\left.\int_{0}^{\frac{\pi}{2}} \frac{r^{4}}{4}\right|_{r=0} ^{r=1} d \theta \\
& y^{2}+x^{2}=1 \\
& r^{2}=1 \Rightarrow r=1 \\
& =\int_{0}^{\pi / 2} \frac{1}{4} d \theta=\left.\frac{1}{4} \theta\right|_{0} ^{\pi / 2}=\frac{1}{4}\left(\frac{\pi}{2}\right) \\
& =\frac{\pi}{8} \text {. }
\end{aligned}
$$

EXAMPLE 5 Find the volume of the solid region bounded above by the paraboloid $z=9-x^{2}-y^{2}$ and below by the unit circle in the $x y$-plane.

Ex. Evaluate $\iint_{R} y d A$, where R lies in the first quadrant

lies between $x^{2}+y^{2}=4$
and

$$
\underbrace{x^{2}+y^{2}=2 x}_{(x-1)^{2}+y^{2}=1}
$$

$$
x^{2}+y^{2}=2 x
$$

$$
\begin{aligned}
& r^{2}=2 r \cos \theta \text { [nner } \\
& r=0 \text { or } r=2 \cos \theta \\
& \text { organ. }
\end{aligned}
$$

$$
\text { center }(1,0)
$$

outer radius $=1$

$$
\begin{aligned}
x^{2}+y^{2} & =4 \\
r^{2} & =4 \Rightarrow x=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { Volume }=\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}}\left(9-x^{2}-y^{2}\right)(d x) d y \\
& =\int_{0}^{4 \pi} \int_{0}^{\left(q-r^{2}\right) r d r} d \theta \\
& =\int_{0}^{2 \pi} 9 \frac{r^{2}}{2}-\left.\frac{r^{4}}{4}\right|_{0} ^{1} d \theta \\
& \begin{array}{l}
x_{1}^{x^{2}+y^{2}=1} \\
x= \pm \sqrt{1-y^{2}} \\
x=-\sqrt{1-y^{2}} \\
x=\sqrt{1-y^{2}}
\end{array} \\
& x^{2}+y^{2}=1 \\
& v^{2}=1 \\
& r=1 \\
& =\int_{0}^{2 \pi}\left(\frac{9}{2}-\frac{1}{4}\right) d \theta=\left.\frac{17}{4} \theta\right|_{0} ^{4}=17 \frac{\pi}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \cos \theta \leq r \leqslant 2, \quad 0 \leqslant \theta \leqslant \frac{\pi}{2} \\
& I=\iint_{R} y d A=\int_{0}^{\pi / 2} \int_{2 \cos \theta}^{2} r \sin \theta \cdot r d r d \theta \\
& =\left.\int_{0}^{\frac{\pi}{2}} \frac{r^{3}}{3} \sin \theta\right|_{r=2 \cos \theta} ^{r=2} d \theta \\
& =\int_{0}^{\frac{\pi}{2}}\left(\frac{8}{3} \sin \theta-\frac{8}{3} \cos ^{3} \theta \sin \theta\right) d \theta \\
& =\frac{8}{3} \int_{0}^{\pi / 2} \sin \theta d \theta-\frac{8}{3} \int_{0}^{\pi / 2} \cos ^{3} \theta \sin \theta d \theta \\
& =\left.\frac{-8}{3} \cos \theta\right|_{0} ^{\pi / 2}-\frac{8}{3} \int_{0}^{1} u^{3} d u \\
& d u=-\sin \theta d \theta \\
& \theta=0 \Rightarrow u=1 \\
& \theta=\pi / 2 \Rightarrow u=0 \\
& =-\frac{8}{3}(0-1)-\left.\frac{8}{3} \frac{u^{4}}{4}\right|_{0} ^{1}=\frac{8}{3}-\frac{2}{3}(1-0) \\
& =2 \text {. }
\end{aligned}
$$

EXAMPLE 6 Using polar integration, find the area) of the region R in the $x y$-plane enclosed by the circle $x^{2}+y^{2}=4$, above the line $y=1$, and below the line $y=\sqrt{3} x$.

Sol.

$A=\int_{\frac{\pi}{6}}^{\pi / 3} \int_{c s c}^{2} r d$

$$
\begin{aligned}
\theta_{1} & =\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right) \\
& =\frac{\pi}{6}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\lambda_{1} \int_{1}^{\sqrt{3}}}{\sqrt{3}(1, \sqrt{3})} \text { ta } \\
& \begin{aligned}
\tan \theta_{2} & =\sqrt{3} \\
\theta_{2} & =\pi / 3
\end{aligned} \\
& \text { a: } \quad x^{2}+y^{2}=4, y=1 \\
& \text { Area }=\left.\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{r^{2}}{2}\right|_{\csc \theta} ^{2} d \theta \\
& \text { b.: } x^{2}+y^{2}=4, y=\sqrt{3} x \\
& x^{2}+3 x^{2}=4 \Rightarrow x^{2}=1 \\
& x=1 \\
& =\int_{\pi / 6}^{\pi / 3}\left(2-\frac{\csc ^{2} \theta}{2}\right) d \theta \\
& =2 \theta+\left.\frac{\cot \theta}{2}\right|_{\pi / 6} ^{\pi / 3} \\
& =\left(\frac{2 \pi}{3}+\frac{1}{2 \sqrt{3}}\right)-\left(\frac{2 \pi}{6}+\frac{\sqrt{3}}{2}\right)=\frac{\pi-\sqrt{3}}{3}
\end{aligned}
$$

Ex. Find the average value of $f(x, y)=\sqrt{x^{2}+y^{2}}$ above the disk $x^{2}+y^{2} \leq a^{2}$ in the $x y$ plane

$$
\begin{aligned}
& \text { Sol } \\
& \operatorname{av}(f)=\frac{1}{\operatorname{Area}(R)} \iint_{R} f(x, y) d A \\
& \operatorname{Aren}(R)=\iint_{R} d A=\int_{0}^{2 \pi} \int_{0}^{a} r d r d \theta \\
& =\left.\int_{0}^{2 \pi} \frac{r^{2}}{2}\right|_{0} ^{a} d \theta \\
& =\int_{0}^{2 \pi} \frac{a^{2}}{2} d \theta=\left.\frac{a^{2}}{2} \theta\right|_{0} ^{2 T} \\
& \iint_{R} f(x, 0) d A=\iint_{R} \sqrt{x^{2}+y^{2}} d A=\iint_{0}^{\int_{0}} \sqrt{r^{2}} \cdot r d r d \theta \\
& =\left.\int_{0}^{2 \pi} \frac{r^{3}}{3}\right|_{0} ^{a} d \theta=\int_{0}^{2 \pi} \frac{a^{3}}{3} d \theta \\
& =2 \frac{\pi}{3} a^{3} \text {. } \\
& \therefore a v(f)=\frac{1}{A_{1} e a} \iint_{R} f(x, y) d A=\frac{1}{\pi a^{2}} \cdot \frac{2 \pi}{3} a^{3}=\frac{2 a}{3}
\end{aligned}
$$

Ex. Use yourknouledge in 15.4 to prove

$$
I=\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}
$$

Sol.

$$
\begin{aligned}
& I^{2}=\left(\int_{0}^{\infty} e^{-x^{2}} d x\right) \cdot\left(\int_{0}^{\infty} e^{-y^{2}} d y\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2}\left(\lim _{A \rightarrow \infty} \int_{0}^{A} e^{-r^{2}} r d r\right) d \theta \rightarrow \\
& u=-r^{2} \\
& d u=-2 r d r \\
& -\frac{1}{2} d u=r d r \\
& =\int_{0}^{\pi / 2}\left(\lim _{A \rightarrow \infty}-\left.\frac{1}{2} e^{-r^{2}}\right|_{0} ^{A}\right) d \theta \\
& =\int_{0}^{\pi / 2}\left[\lim _{A \rightarrow \infty}\left(-\frac{1}{2}\left(-e^{A^{2}}\right)+\frac{1}{2}\right)\right] d \theta \\
& =\int_{0}^{\pi / 2}\left(0+\frac{1}{2}\right) d \theta=\left.\frac{1}{2} \theta\right|_{0} ^{\pi / 2}=\frac{\pi}{4} \\
& \therefore I^{2}=\pi / 4 \\
& \Rightarrow I=\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2} .
\end{aligned}
$$

15.5 $\begin{aligned} & \text { Triple Integrals in Rectangular Coordinates } \\ & \end{aligned}$

Triple Integrals

FIGURE 15.29 Partitioning a solid with rectangular cells of volume ΔV_{k}.

$$
S_{n}=\sum_{k=1}^{n} F\left(x_{k}, y_{k}, z_{k}\right) \Delta V_{k} .
$$

We are interested in what happens as D is partitioned by smaller and smaller cells, so that $\Delta x_{k}, \Delta y_{k}, \Delta z_{k}$ and the norm of the partition $\|P\|$, the largest value among $\Delta x_{k}, \Delta y_{k}, \Delta z_{k}$, all approach zero. When a single limiting value is attained, no matter how the partitions and points $\left(x_{k}, y_{k}, z_{k}\right)$ are chosen, we say that F is integrable over D. As before, it can be
shown that when F is continuous and the bounding surface of D is formed from finitely many smooth surfaces joined together along finitely many smooth curves, then F is integrable. As $\|P\| \rightarrow 0$ and the number of cells n goes to ∞, the sums S_{n} approach a limit. We call this limit the triple integral of \boldsymbol{F} over \boldsymbol{D} and write

$$
\lim _{n \rightarrow \infty} S_{n}=\iiint_{D} F(x, y, z) d V \quad \text { or } \quad \lim _{\|P\| \rightarrow 0} S_{n}=\iiint_{D} F(x, y, z) d x d y d z .
$$

Volume of a Region in Space

DEFINITION The volume of a closed, bounded region D in space is

$$
V=\iiint_{D} d V
$$

To evaluate

$$
\iiint \int_{D} F(x, y, z)(d V)
$$

1. Sketch. Sketch the region D along with its "shadow" R (vertical projection) in the $x y$-plane. Label the upper and lower bounding surfaces of D and the upper and lower bounding curves of R.

2. Find the z-limits of integration. Draw a line M passing through a typical point (x, y) in R parallel to the z-axis. As z increases, M enters D at $z=f_{1}(x, y)$ and leaves at $z=f_{2}(x, y)$. These are the z-limits of integration.

3. Find the y-limits of integration. Draw a line L through (x, y) parallel to the y-axis. As y increases, L enters R at $y=g_{1}(x)$ and leaves at $y=g_{2}(x)$. These are the y-limits of integration.

4. Find the x-limits of integration. Choose x-limits that include all lines through R parallei to the y-axis ($x=a$ and $x=b$ in the preceding figure). These are the x-limits of integration. The integral is

$$
\begin{aligned}
& \text { integral is } \\
& \left.\int_{x=a}^{x=b} \int_{y=g_{1}(x)}^{y=g_{2}(x)} \int_{z=f_{1}(x, y)}^{z=f_{2}(x, y)} F(x, y, z) \xrightarrow{\swarrow} \stackrel{\rightharpoonup}{d}\right) d y d x
\end{aligned}
$$

 Sol. I $I=\left.\int_{0}^{1} \int_{0}^{1-x^{2}} x z\right|_{z=3} ^{z=4-x^{2}-y} d y d x$

$$
=\int_{0}^{1} \int_{0}^{1-x^{2}}\left(x\left(4-x^{2}-y\right)-3 x\right) d y d x \quad\left(\begin{array}{l}
\text { Double } \\
\text { integral })
\end{array}\right.
$$

$$
\begin{aligned}
& =\int_{0}^{1} \int_{0}^{1-x^{2}}\left(x-x^{3}-x y\right) d y d x \\
& =\int_{0}^{1} x y-x^{3} y-\left.\frac{x y^{2}}{2}\right|_{y=0} ^{y=1-x^{2}} d x \\
& =\int_{0}^{1}\left(x\left(1-x^{2}\right)-x^{3}\left(1-x^{2}\right)-\frac{x}{2}\left(1-x^{2}\right)^{2}\right) d x \\
& =\cdots \quad \text { of the solid }
\end{aligned}
$$

Ext. Find the volume/bounded by

$$
z=3 x^{2}+3 y^{2} \quad \text { and } \quad z=4-x^{2}-y^{2}
$$

$S_{8} 1$.

$$
\begin{aligned}
& \text { Volume }=\iint_{-1} d V \\
& =\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{3 x^{2}+3 y^{2}}^{4-x^{2}-y^{2}} d z d y d x \\
& =\left.\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} z\right|_{3 x^{2}+3 y^{2}} ^{4-x^{2}-y^{2}} d y d x \\
& =\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\left[4-4\left(x^{2}+y^{2}\right)\right] d y d x \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(4-4 r^{2}\right) r d r d \theta
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\text { The surfaces intersect } \\
\text { on the circular cylinder: } \\
z=3 x^{2}+3 y^{2}, z=4-x^{2}-y^{2} \\
y-x^{2}-y^{2}=3 x^{2}+3 y^{2}
\end{array}\right.
$$

$$
\begin{aligned}
& y d x \quad y \quad x^{2}+y^{2}= \\
& y=\sqrt{1-x^{2}} \\
& y=-\sqrt{1-x^{2}}
\end{aligned}
$$

Ex. Find the volume \uparrow bounded by $-x^{2}-y^{2}+z^{2}=1$ and the plane $z=2$

Sol. $\quad z^{2}=1+x^{2}+y^{2}$

$$
\begin{aligned}
& V=\int_{-\sqrt{3}}^{\sqrt{3}} \int_{-\sqrt{3-y^{2}}}^{\sqrt{3-y^{2}}} \int_{\sqrt{1+x^{2}+y^{2}}}^{2} d z d x d y \\
& =\int_{-\sqrt{3}}^{\sqrt{3}} \int_{-\sqrt{3-y^{2}}}^{\sqrt{3-y^{2}}}\left(2-\sqrt{1+x^{2}+y^{2}}\right) d x d y \\
& x \text { Projection in } \\
& x y \text {-plane } \\
& z=2, x^{2}+y^{2}+1=z^{2} \\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}}\left(2-\sqrt{1+r^{2}}\right) r d r d \theta \\
& \Rightarrow \quad x^{2}+y^{2}+1=4 \\
& x^{2}+y^{2}=3 \\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} 2 r d r d \theta-\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} r \sqrt{1+r^{2}} d r d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \left.\int_{0}^{2 \pi} r^{2}\right|_{0} ^{\sqrt{3}} d \theta \quad u=1+r^{2} \\
& =6 \pi .
\end{aligned}
$$

Exp. Find the volume of the tetrahedron bounded by $x+2 y+z=2$,

$$
\begin{aligned}
& x=2 y, x=0, z=0 r
\end{aligned}
$$

In $x y$-plane $x+2 y=2, x=2 y, x=0$

Ex. Find the volume of the region in space bounded below by the $x y$-plane, Laterally by the cylinder $x^{2}+y^{2}=1$ and above by the cone $z=\sqrt{x^{2}+y^{2}}$.

Sol.

$$
\begin{aligned}
& V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{r} d z \underbrace{r d r d \theta}_{z=r} \\
& =\left.\int_{0}^{2 \pi} \int_{0}^{1} r z\right|_{z=0} ^{z=r} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r^{2} d r d \theta=\left.\int_{0}^{2 \pi} \frac{r^{3}}{3}\right|_{0} ^{1} d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{3} d \theta=\frac{2 \pi}{3}
\end{aligned}
$$

Find the volumes of the regions in Exercises 23-36.
23. The region between the cylinder $z=y^{2}$ and the $x y$-plane that is bounded by the planes $x=0, x=1, y=-1, y=1$

$$
V=\int_{0}^{1} \int_{-1}^{1} \int_{0}^{2}
$$

$$
x, y, z \geqslant 0
$$

25. The region in the first octant -bounded by the coordinate planes, the plane $y+(z)=2$, and the cylinder $x=4-y^{2}$

$$
\begin{aligned}
& t=2, y \\
& x \rightarrow-p \text { un } x=y-y^{2} \\
& y=2 \\
& \sqrt{2} \int^{4-y^{2}} 2-y \quad y=\sqrt{4-y^{2}} \\
& \int d z \underbrace{d x d y}
\end{aligned}
$$

Sunday, July 04, 2021
9:12 PM
28. The region in the first octant bounded by the coordinate planes, the plane $y=1-x_{2}$ and the surface $z=\cos (\pi x / 2)$, $0 \leq x \leq 1$

198
Sunday, July 04, 2021
9:12 PM \qquad
\qquad
21. Here is the region of integration of the integral

$$
\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1-y} d z d y d x
$$

Rewrite the integral as an equivalent iterated integral in the order
a. $d y d z d x$
b. $d y d x d z$
c. $d x d y d z$
d. $d x d z d y$

$$
(\partial) V \int_{0} \int_{0} \int_{-\sqrt{y}} d x d z d y
$$

Average Value of a Function in Space

The average value of a function F over a region D in space is defined by the formula

$$
\text { Average value of } F \text { over } D=\frac{1}{\text { volume of } D} \iiint_{D} F d V
$$

EXAMPLE 4 Find the average value of $F(x, y, z)=x y z$ throughout the cubical region D bounded by the coordinate planes and the planes $x=2, y=2$, and $z=2$ in the first octant.

Solution

$$
\int_{0}^{2} \int_{0}^{2} \int_{0}^{2} d z d y d x
$$

$$
0 \leqslant x \leqslant 2, \quad 0 \leqslant y \leqslant 2, \quad 0 \leqslant z \leqslant 2
$$

The volume of the region D is $(2)(2)(2)=8$. The value of the integral of F over the cube is

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{2} \int_{0}^{2} x y z d x d y d z & =\int_{0}^{2} \int_{0}^{2}\left[\frac{x^{2}}{2} y z\right]_{x=0}^{x=2} d y d z=\int_{0}^{2} \int_{0}^{2} 2 y z d y d z \\
& =\int_{0}^{2}\left[y^{2} z\right]_{y=0}^{y=2} d z=\int_{0}^{2} 4 z d z=\left[2 z^{2}\right]_{0}^{2}=8
\end{aligned}
$$

$\begin{aligned} & \text { Average value of } \\ & x y z \text { over the cube }\end{aligned}=\frac{1}{\text { volume }} \iiint_{\text {cube }} x y z d V=\left(\frac{1}{8}\right)(8)=1$.

Integration in Cylindrical Coordinates $\quad(x, y, z) \quad \begin{array}{r}x=r \cos \theta \\ y=r \sin \theta\end{array}$
DEFINITION Cylindrical coordinates represent a point P in space by ordered
$z=z$ triples (r, θ, z) in which

1. r and θ are polar coordinates for the vertical projection of P on the $x y$-plane
2. z is the rectangular vertical coordinate.

FIGURE 15.42 The cylindrical coordinates of a point in space are r, θ, and z.

Equations Relating Rectangular (x, y, z) and Cylindrical (r, θ, z) Coordinates

$$
\begin{gathered}
x=r \cos \theta, \quad y=r \sin \theta, \quad z=z, \\
r^{2}=x^{2}+y^{2}, \quad \tan \theta=y / x
\end{gathered}
$$

$r=a$ describes not just a circle in the $x y$-plane
but an entire cylinder about the z-axis
$\theta=\theta_{0}$ describes the plane that contains the z-axis and makes an angle $\left(\theta_{0}\right)$ with the positive x-axis $z=z_{0}$ describes a plane perpendicular to the z-axis.

Example. $r=4$
$\theta=\frac{\pi}{3}$
$z=2$.

Cylinder, radius 4, axis the z-axis
Plane containing the z-axis
Plane perpendicular to the z-axis

How to Integrate in Cylindrical Coordinates
To evaluate

$$
\iiint_{D} f(r, \theta, z) d V
$$

1. Sketch. Sketch the region D along with its projection R on the $x y$-plane. Label the surfaces and curves that bound D and R.

2. Find the z-limits of integration. Draw a line M through a typical point (r, θ) of K parallel to the z-axis. As z increases, M enters D at $z=g_{1}(r, \theta)$ and leaves at $z=g_{2}(r, \theta)$. These are the z-limits of integration.

3. Find the r-limits of integration. Draw a ray L through (r, θ) from the origin. The ray enters R at $r=h_{1}(\theta)$ and leaves at $r=h_{2}(\theta)$. These are the r-limits of integration.

4. Find the θ-limits of integration. As L sweeps across R, the angle θ it makes with the posifive x-axis runs from $\theta=\alpha$ to $\theta=\beta$. These are the θ-limits of integration. The integral is

$$
\iiint_{D} f(r, \theta, z) d V=\int_{\theta=\alpha}^{\theta=\beta} \int_{r=h_{1}(\theta)}^{r=h_{2}(\theta)} \int_{z=g_{1}(r, \theta)}^{\underbrace{z=g_{2}(r, \theta)}} \underbrace{f(r, \theta, z)} \underbrace{d z} \underbrace{\sim} \text { rrdt} .
$$

EXAMPLE 1 Find the limits of integration in cylindrical coordinates for integrating a function $f(r, \theta, z)$ over the region D bounded below by the plane $z=0$. laterally by the circular cylinder $x^{2}+(y-1)^{2}=1$, and above by the paraboloid $z=x^{2}+y^{2}$.

$$
(0,1) \quad \text { radius }=1
$$

Ex. Convert into cylindrical:

$$
I=\int_{-1}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{0}^{x}\left(x^{2}+y^{2}\right) \underbrace{v} z d x
$$

Sol

$$
\begin{aligned}
& =\left.\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{1^{2}} r^{3} z\right|_{z=0} ^{z=r \cos \theta} d r d \theta \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{1} r^{4} \cos \theta d r d \theta
\end{aligned}
$$

17. D is the solid right cylinder whose base is the region in the $x y$-plane that lies inside the cardioid $r=1+\cos \theta$ and outside the circle $r=1$ and whose top lies in the plane $z=4$.

base

$$
\begin{aligned}
& \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{1}^{1+\cos \theta} \int_{0}^{4} r d z d r d \theta \\
& =\left.\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{1}^{1+\cos \theta} r z\right|_{z=0} ^{z=4} d r d \theta \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{1}^{1+\cos \theta} 4 r d r d \theta \\
& =\left.\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 r^{2}\right|_{r=1} ^{r=1+\cos \theta} \\
= & 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left[(1+\cos \theta)^{2}-1\right] d \theta \\
& =2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(2 \cos \theta+\cos ^{2} \theta\right) d \theta \\
& =2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left[2 \cos \theta+\frac{1+\cos 2 \theta}{2}\right] d \theta \\
& =\left.\left[4 \sin \theta+\theta+\frac{\sin 2 \theta}{2}\right]\right|_{-\frac{\pi}{2}} ^{\pi / 2} \\
& =\left(4+\frac{\pi}{2}+0\right)-\left(-4-\frac{\pi}{2}-0\right) \\
& =8+\pi .
\end{aligned}
$$

$$
\underset{\text { ss and Integration }}{(x, z)}(\rho, \phi, \theta)
$$

206
Sunday, July 04, 2021
9:12 PM

Spherical Coordinates and Integration

$$
\begin{gathered}
z=\rho \cos \phi \\
r=\rho \sin \phi \\
x=r \cos \theta \\
x=\rho \sin \phi \cos \theta \\
y=r \sin \theta \\
y=\rho \sin \phi \sin \theta \\
x^{2}+y^{2}=r^{2}=\rho^{2} \sin ^{2} \phi \\
x^{2}+y^{2}=\rho^{2} \sin ^{2} \phi \\
x^{2}+y^{2}+z^{2}=\rho^{2} \sin ^{2} \phi+\rho^{2} \cos ^{2} \phi \\
\therefore=\rho^{2}(1) \\
\therefore x^{2}+y^{2}+z^{2}=\rho^{2} \\
\rho>0 \quad 0 \leq \phi \leq \pi \\
\quad 0 \leq \theta \leq 2 \pi
\end{gathered}
$$

ex. convert to spherical

$$
z=\sqrt{x^{2}+y^{2}}
$$

Sol.

$$
\begin{aligned}
\rho \cos \phi & =\sqrt{\rho^{2} \sin ^{2} \phi \quad,} \begin{aligned}
\rho \cos \phi & =|\rho \sin \phi|, \rho>0 \\
& =\rho \sin \phi \quad 0 \leq \phi \leq \pi \\
\rho \cos \phi & =\rho \sin \phi, \rho>0 \\
\tan \phi & =1 \Rightarrow \phi=\frac{\pi}{4}
\end{aligned}
\end{aligned}
$$

Ex.

$$
\begin{aligned}
& \frac{x^{2}+y^{2}+z^{2}}{\rho^{2}=9}=9 \text { sphere } \\
& \rho=3 \text { sphere. }
\end{aligned}
$$

Ex. convert to spherical coordinates.

$$
x^{2}+y^{2}+(z-1)^{2}=1
$$

Sol.

$$
\begin{aligned}
& \frac{x^{2}+y^{2}+z^{2}}{}-2 z=0 \\
& \rho^{2}-2 \rho \cos \phi=0 \\
& \quad \rho=2 \cos \phi, \rho>0
\end{aligned}
$$

Ex. Describe

1) $\rho=4$ Sphere, radius 4 , center at origin.
2) $\phi=\frac{\pi}{3}$ Cone opening up from the origin, male ing an angle of $\pi / 3$ radians with the positive z-axis.
3) $\theta=\frac{\pi}{3} \quad \frac{\text { Half-plane), along the } z \text {-axis, }}{\text { making a angle of } \pi}$ making an angle of $\frac{\pi}{3}$ with the positive x-axis -

Recall,
 (x, y,
 $z) \sim(\rho, \phi, \theta)$

$$
\begin{aligned}
& r=\rho \sin \phi, \quad x=r \cos \theta=\rho \sin \phi \cos \theta, \\
& z=\rho \cos \phi . \quad y=r \sin \theta=\rho \sin \phi \sin \theta, \\
& \rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{r^{2}+z^{2}} \text {. } \\
& x^{2}+y^{2}+z^{2}=\rho^{2} \\
& x \\
& 0 \leqslant \phi \leqslant \pi \\
& 0 \leqslant 0 \leqslant 2 T
\end{aligned}
$$

How to Integrate in Spherical Coordinates

To evaluate

$$
\iiint_{D} f(\rho, \phi, \theta) d V
$$

1. Sketch. Sketch the region D along with its projection R on the $x y$-plane. Label the surfaces that bound D.

2. Find the ρ-limits of integration. Draw a ray M from the origin through D making an angle ϕ with the positive z-axis. Also draw the projection of M on the $x y$-plane (call the projection L). The ray L makes an angle θ with the positive x-axis. As ρ increases, M enters D at $\rho=g_{1}(\phi, \theta)$ and leaves at $\rho=g_{2}(\phi, \theta)$. These are the ρ-limits of integration.

3. Find the ϕ-limits of integration. For any given θ, the angle ϕ that M makes with the z-axis runs from $\phi=\phi_{\min }$ to $\phi=\phi_{\max }$. These are the ϕ-limits of integration.
4. Find the θ-limits of integration. The ray L sweeps over R as θ runs from α to β. These are the θ-limits of integration. The integral is

Ex. Find the volume of the ice cream cone cut from the solid sphere $x^{2}+y^{2}+z^{2} \leq 1$ by the

$$
\text { Cone } z=\frac{1}{\sqrt{3}} \sqrt{x^{2}+y^{2}}
$$

Sol.

$$
\rho \leq 1
$$

$$
\begin{aligned}
z=\frac{1}{\sqrt{3}} \sqrt{x^{2}+y^{2}} & \Rightarrow \rho \cos \phi=\frac{1}{\sqrt{3}} \sqrt{\rho^{2} \sin ^{2} \phi} \\
& \Rightarrow \rho \cos \phi=\frac{1}{\sqrt{3}} \rho \sin \phi, \\
& \Rightarrow \tan \phi=\sqrt{3} \quad 0 \leq \phi \leq \pi
\end{aligned}
$$

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{0}^{1} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\left.\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \frac{\rho^{3}}{3} \sin \phi\right|_{\rho=0} ^{\rho=1} d \phi d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
\substack{210 \\
\text { sunder, } 1 \text { ult } 04,2021} \\
\text { and }
\end{array}=\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \frac{1}{3} \sin \phi d \phi d \theta \\
& =\int_{0}^{2 \pi}-\left.\frac{1}{3} \cos \phi\right|_{\phi=0} d \theta \\
& =\int_{0}^{2 \pi}\left[-\frac{1}{3}\left(\frac{1}{2}\right)+\frac{1}{3}(1)\right] d \theta \\
& \int_{0}^{2 \pi} \frac{1}{6} d \theta=\left.\frac{1}{6} \theta\right|_{0} ^{2 \pi}=\pi / 3 .
\end{aligned}
$$

52. Cone and planes Find the volume of the solid enclosed by the cone $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=1$ and $z=2$.

Sol.

$$
\begin{gathered}
z=\sqrt{x^{2}+y^{2}} \\
\rho \cos \phi=\sqrt{\rho^{2} \sin ^{2} \phi} \\
=\rho \sin \phi, \rho>0,0 \leq \phi \leq \pi \\
\tan \phi=1 \\
\phi=\pi \left\lvert\, 4 \quad 0 \leq \phi \leq \frac{\pi}{4}\right. \\
z=1 \Rightarrow \rho \cos \phi=1 \Rightarrow \rho=\sec \phi \\
z=2 \Rightarrow \rho \cos \phi=2 \Rightarrow \rho=2 \sec \phi \\
\sec \phi \leq \rho \leq 2 \sec \phi
\end{gathered}
$$

Volume
$\sec \phi$

$$
\begin{aligned}
& =\left.\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \frac{\rho^{3}}{3} \sin \phi\right|_{\rho=\sec \phi} ^{\rho=2 \sec \phi} d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 4}\left[\frac{8}{3} \sec ^{3} \phi \sin \phi-\frac{1}{3} \sin \phi \sec ^{3} \phi\right] \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 4}\left(\frac{8}{3} \frac{\sin \phi}{\cos ^{3} \phi}-\frac{1}{3} \frac{\sin \phi}{\cos ^{3} \phi}\right) d \theta \\
& u=\cos \phi \ldots \ldots . .
\end{aligned}
$$

Ex. Find the volume of the solid bod below by the sphere $x^{2}+y^{2}+(z-1)^{2}=1$ and above by the cone $z=\sqrt{x^{2}+y^{2}}$

$$
\begin{aligned}
& \text { Sol. } \underbrace{x^{2}+y^{2}+z^{2}-2 z=0}_{\rho^{2}-2 \rho \cos \phi=0} \\
& z=\sqrt{x^{2}+y^{2}} \Rightarrow \rho \cos \phi=\rho \sin \phi, \rho>0 \\
& \tan \phi=1 \rightarrow \phi=\frac{\pi}{4} \\
& 0 \leq \theta \leq 2 \pi, \frac{\pi}{4} \leq \phi \leq \pi / 2,0 \leq \rho \leq 2 \cos \phi
\end{aligned}
$$

Ex. Evaluate $I=\iint_{B} x e^{\sqrt{x^{2}+y^{2}+z^{2}}} \underbrace{d V}_{\rho^{2} \sin \phi d \rho d \phi d \theta}$
Where B is the region of the unit ball $x^{2}+y^{2}+z^{2} \leq 1$ hies in the first octant.

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2} \leq 1 \\
& \rho \leq 1 \\
& 0 \leq \rho \leq 1 \\
& I=\int_{0}^{\pi / 2} \int_{0}^{2} \int_{0}^{\pi / 2} \underbrace{\rho \sin \phi \cos \theta \cdot e^{\rho}}_{f} \cdot \underbrace{\rho^{2} \sin \phi d \rho d \phi d \theta}_{d V} \\
& =\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{\rho^{3} e^{\rho} \sin ^{2} \phi \cos \theta d \rho d \phi d \theta}^{1} \\
& =\cdots \cdot(1 H \cdot \omega)
\end{aligned}
$$

We call R the image of G under the transformation, and G the preimage of R.

$$
\begin{equation*}
\iint_{R} f(x, y) d x d y=\iint_{G} f(g(u, v) \quad h(u, v)|J(u, v)| d u d v . \tag{1}
\end{equation*}
$$

The factor $J(u, v)$, whose absolute value appears in Equation (1), is the Jacobian of the coordinate transformation, named after German mathematician Carl Jacobi.

DEFINITION The Jacobian determinant or Jacobian of the coordinate transformation $x=g(u, v), y=h(u, v)$ is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\underbrace{J(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \tag{2}\\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial y}{\partial u} \frac{\partial x}{\partial v}
$$

The Jacobian can also be denoted by

$$
J(u, v)=\frac{\partial(x, y)}{\partial(u, v)}
$$

EXAMPLE 1 Find the Jacobian for the polar coordinate transformation $x=r \cos \theta$, $y=r \sin \theta$, and use Equation (1) to write the Cartesian integral $\iint_{R} f(x, y) d x d y$ as a polar integral.

Solution

$$
\begin{aligned}
& x=r \cos \theta, \quad y=r \sin \theta \\
& J(r, \theta)=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right| \\
& =\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right| \\
& =(\cos \theta)(r \cos \theta)-(-r \sin \theta)(\sin \theta) \\
& =r\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& =r(1)=r \cdot|J| \\
& \iint_{R} f(x, y) d A=\iint_{G} f(r \cos \theta, r \sin \theta) d r d r d \theta
\end{aligned}
$$

EXAMPLE 2 Evaluate

$$
\begin{gathered}
\frac{y}{2} \leq x \leq \frac{y}{2}+1 \\
0 \leq y \leq 4
\end{gathered}
$$

$$
\int_{0}^{4} \int_{x=y / 2}^{x=(y / 2)+1} \frac{2 x-y}{2} d x d y
$$

by applying the transformation

$$
u=\frac{2 x-y}{2}, \quad v=\frac{y}{2}
$$

and integrating over an appropriate region in the $u v$-plane.
Sol.

$$
\begin{array}{r}
2 u=2 x-y \\
\left.2 v=y \Rightarrow \begin{array}{r}
2 u+2 v=2 x \\
x=u+v \\
J(u, v)=\left\lvert\, \begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\left|=\left|\begin{array}{cc}
1 & 1 \\
0 & 2
\end{array}\right|=2\right.
\end{array}\right.
\end{array}\right) .\left\{\begin{aligned}
y=2
\end{aligned}\right.
\end{array}
$$

$R: \quad \frac{y}{2} \leq x \leq \frac{y}{2}+1 \quad, \quad 0 \leq y \leq 4$

$$
\begin{aligned}
& x=\frac{y}{2}+1 \\
& y=0 \Rightarrow x=1 \\
& x=0 \Rightarrow y=-2
\end{aligned}
$$

$$
\begin{gathered}
y=0 \Rightarrow 2 v=0 \Rightarrow v=0 \\
x=\frac{y}{2} \Rightarrow u+v=\frac{2 v}{2} \Rightarrow u=0 \\
x=\frac{y}{2}+1 \Rightarrow u+v=\frac{2 v}{2}+1 \\
u=1
\end{gathered}
$$

216

$$
y=4 \Rightarrow 2 v=4 \Rightarrow v=2
$$

Sunday, July 04, 2021
9:12 PM

$$
\left.\begin{array}{rl}
\int_{0}^{4} \int_{\frac{y}{2}}^{\frac{y}{2}+1} \frac{2 x-y}{2} d x d y & =\iint_{G}^{x=u \neq v} \\
y=2 v
\end{array}\right] \frac{2(u+v)-2 v}{2}|J| d u d v
$$

EXAMPLE 3 Evaluate

$$
R: 0 \leq y \leq 1-x \text {, }
$$ $0 \leq x \leq 1$

$$
\int_{0}^{1} \int_{0}^{1-x} \sqrt{x+y}(y-2 x)^{2 /} d y d x
$$

Sol.

$$
\begin{gathered}
u=x+y, v=y-2 x \\
x+y=u \\
\left.-\frac{1(-2 x+y=v}{3 x=u-v} \Rightarrow x=\frac{1}{3} u-\frac{1}{3} v\right) \\
y=u-x=u-\left(\frac{1}{3} u-\frac{1}{3} v\right) \\
y=\frac{2}{3} u+\frac{1}{3} v
\end{gathered}
$$

$$
J(u, v)=\left|\begin{array}{cc}
\frac{1}{3} & -\frac{1}{3} \\
\frac{2}{3} & \frac{1}{3}
\end{array}\right|=\frac{1}{9}+\frac{2}{9}=\frac{1}{3}
$$

$$
R, \quad 0 \leq y \leq 1-x, \quad 0 \leq x \leq 1
$$

$$
y=0
$$

$$
y=1-x
$$

$G:$

$$
\begin{aligned}
& y=0 \Rightarrow \frac{2}{3} u+\frac{1}{3} v=0 \Rightarrow V=-2 u \\
& x=0 \Rightarrow \frac{1}{3} u-\frac{1}{3} v=0 \\
& u=v \\
& x+y=1 \Rightarrow \frac{1}{3} u-\frac{1}{3} k+\frac{2}{3} u+\frac{1}{3}=1 \\
& u=1
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1-x} \sqrt{x+y}(y-2 x)^{2} d y d x \\
& =\int_{0}^{1} \int_{-2 u}^{u} \sqrt{u} v^{2}|J| d v d u \\
& \left.=\int_{0}^{1} \int_{-2 u}^{u} \sqrt{u} v^{2}\left|\frac{1}{3}\right| d v \right\rvert\, u \\
& =\left.\int_{0}^{1} \frac{1}{3} \sqrt{u} \frac{v^{3}}{3}\right|_{v=-2 u} ^{v=u} d u \\
& =\frac{1}{9} \int_{0}^{1}\left[\sqrt{u} \cdot u^{3}-\sqrt{u}\left(-8 u^{3}\right)\right] d u \\
& =\frac{1}{9} \int_{0}^{1} g u^{7 / 2} d u \\
& =\left.\frac{2}{9} u^{9 / 2}\right|_{0} ^{1}=\frac{2}{9}
\end{aligned}
$$

the End of Cal_{3} \qquad

$$
C H 12,13,14,15
$$

Discussion on Chapter 14
14.1

In Exercises 65-68, find and sketch the domain of f. Then find an equation for the level curve or surface of the function passing through the given point.
65. $f(x, y)=\sum_{n=0}^{\infty}\left(\frac{x}{y}\right)^{n}$,

$$
=\frac{1}{1-\frac{x}{y}},\left|\frac{x}{y}\right|<1
$$

$$
\begin{align*}
\sum_{n=0}^{\infty} x^{n} & =1+x+x^{2}+\cdots \tag{1,2}\\
& =\frac{1}{1-x},|x|<1
\end{align*}
$$

$$
\begin{aligned}
& f(x, y)=\frac{y}{y-x},\{|x|<|y| \\
& \operatorname{Dom}(f)=\{(x, 7):|y|>|x|\} \\
& f(x, y)=f(1,2) \\
& y-x=\frac{x}{y}=\left\{\begin{array}{l}
y+x \mid \text { or } y<-|x|
\end{array}\right. \\
& y=2 x=2 x
\end{aligned}
$$

68. $g(x, y, z)=\int_{x}^{y} \frac{d t}{1+t^{2}}+\int_{0}^{z} \frac{d \theta}{\sqrt{4-\theta^{2}}}, \quad(0,1, \sqrt{3})$

$$
\begin{gathered}
g(x, y, z)=\tan ^{-1} y-\tan ^{-1} x+\sin ^{-1}\left(\frac{z}{2}\right) \\
D=\left\{\begin{array}{l}
\left.(x, y, z):-1 \leq \frac{z}{2} \leq 1\right\} \\
=\{(x, y, z):-2 \leq z \leq 2\}
\end{array}\right.
\end{gathered}
$$

Level Suifuce

$$
\begin{aligned}
& g(x, y, z)=g(0,1, \sqrt{3}) \\
& \tan _{n}^{-1} y-\tan ^{-1} x+\sin ^{-1}\left(\frac{z}{2}\right)=\frac{\pi}{4}-0+\frac{\pi}{3} \\
& \tan ^{-1} y-\tan ^{-1} x+\sin ^{-1}\left(\frac{z}{2}\right)=7 \frac{\pi}{12}
\end{aligned}
$$

23. $f(x, y)=\frac{1}{\sqrt{16-x^{2}-y^{2}}}$
24. Does knowing that

$$
1-\frac{x^{2} y^{2}}{3}<\frac{\tan ^{-1} x y}{x y}<1
$$

$$
\lim 1=2
$$

tell you anything about

$$
(x, 0) \rightarrow(0,0)
$$

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\tan ^{-1} x y}{x y} ? \quad \lim \left(1-\frac{x^{2} y^{2}}{3}\right)=1
$$

Give reasons for your answer.

$$
\therefore \lim _{(x, y) \rightarrow(0,0)} \frac{\operatorname{tam}_{-1}^{-1}(x y)}{x y}=1 b y
$$

Another proethod,

$$
\begin{gathered}
u=x y,(x, y) \rightarrow(0,0) \Rightarrow u \rightarrow 0 \\
\lim _{u \rightarrow 0} \frac{\tan ^{-1} u\left(\frac{0}{5}\right)}{u} \stackrel{\lim _{u \rightarrow 0}}{ } \frac{\frac{1}{1+u^{2}}}{1}=1 .
\end{gathered}
$$

222
14.3 partial derivatives

$$
\begin{aligned}
& \text { 22. } f(x, y)\left.=\sum_{y=0}^{\infty}(x, y){ }^{n}(\mid x y)<1\right) \\
&=\frac{1}{1-x y},|x y|<1 \\
& f_{x}=\frac{-(0-y)}{(1-x y)^{2}}=\frac{y}{(1-x y)^{2}} \\
& f_{y}=\frac{x}{(1-x y)^{2}} \\
& z=f(x, y) \quad \text { find } \frac{\partial y}{\partial x}=? ? \\
& F=f(x, y)-z=0 \\
& \frac{\partial y}{\partial x}=-\frac{F_{x}}{F_{y}}=-\frac{f_{x}}{f_{y}}
\end{aligned}
$$

$$
\text { ex. } \quad z^{2}=e^{x}+y^{2} \quad \text { find } \frac{\partial z}{\partial x}{ }^{\text {fy }}
$$

Sol. $\quad F(x, y, z)=e^{x}+y^{2}-z^{2}=0$

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=\frac{-F_{x}}{F_{z}}=-\frac{e^{x}}{-2 z} \\
&=\frac{e^{x}}{2 z}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 60. } f(x, y)= \begin{cases}\frac{\sin \left(x^{3}+y^{4}\right)}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\
0, & (x, y)=(0,0),\end{cases} \\
& \frac{\partial f}{\partial x} \text { and } \frac{\partial f}{\partial y} \text { at }(0,0) \\
& f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{\sin \left(h^{3}\right)}{h^{2}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin \left(h^{3}\right)}{h^{3}}=1 . \\
& f_{y}(0,0)=l_{k \rightarrow 0} \frac{f(0,0+k)-f(0,0)}{k} \\
& =\lim _{k \rightarrow 0} \frac{\sin \left(k^{4}\right)}{k^{3}} \\
& =\prod_{k \rightarrow 0} \frac{\cos \left(k^{4}\right) \cdot 4 k^{3}}{3 k^{2}} \\
& =\frac{4}{3} \varliminf_{k \rightarrow 0} k \cos \left(k^{4}\right) \\
& =\frac{4}{3}(0)(1)=0 .
\end{aligned}
$$

84. $w=\ln (2 x+2 c t)$ Satisfies $\frac{\partial^{2} w}{\partial t^{2}}=c^{2} \frac{\partial^{2} w}{\partial x^{2}},<$ constant

$$
\begin{gathered}
\frac{\partial \omega}{\partial t}=\frac{2 c}{2 x+2 c t}=2 c(2 x+2 c t)^{-1} \\
\frac{\partial^{2} \omega}{\partial t^{2}}=-2 c(2 x+2 c t)^{-2} \cdot 2 c \\
=\frac{-4 c^{2}}{(2 x+2 c t)^{2}}=L \cdot H \cdot S \\
\frac{\partial \omega}{\partial x}=\frac{2}{2 x+2 c t} \Rightarrow \frac{\partial^{2} \omega}{\partial x^{2}}=\frac{-4}{(2 x+2 c t)^{2}} \\
\text { R.H.S }=c^{2} \frac{\partial^{2} \omega}{\partial x^{2}}=\frac{-4 c^{2}}{(2 x+2 c t)^{2}}=L \cdot H \cdot S . \\
x^{2}<x^{2} \angle 2 x^{2}
\end{gathered}
$$

92. Let $f(x, y)= \begin{cases}0, & x^{2}<y<2 x^{2} \\ 1, & \text { otherwise. }\end{cases}$

Show that $f_{x}(0,0)$ and $f_{y}(0,0)$ exist, but f is not differentiable at $(0,0)$.
Sol. $f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}$

$$
\begin{aligned}
& =l_{h \rightarrow 0} \frac{f(h, 0)-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\mid-1}{h}=\lim _{h \rightarrow 0} \frac{0}{h} \\
& \\
& =\lim _{h \rightarrow 0}=0 \\
& \text { exists }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Lim}_{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{(x, y) \rightarrow(0,0)} 1=1 \\
& \text { Along } y=x^{2} \\
& \lim _{(x, y) \rightarrow(0,0)} f(x, y)=\operatorname{Lim}_{(x, y) \rightarrow(0,0)} 0=0
\end{aligned}
$$

$$
\text { Along } y=1.5 x^{2}
$$

\Rightarrow TWN0 path test $\Rightarrow \operatorname{Lim}_{(, y) \rightarrow(0,0)} f(x, y)$ DNA

$$
(\alpha, y) x(0,0)
$$

$\Rightarrow f$ is not cont at $(0,0)$
$\Rightarrow f$ is not diffble.
14.4 Chain Rule
14.5 Directional Derivatives and Gradient Vectors

$$
\left.\left.D_{\vec{u}} f\right|_{p_{0}} \nabla f\right|_{\rho_{0}} \cdot \vec{u} \quad \vec{u}: \text { unit }
$$

35. The derivative of $f(x, y)$ at $P_{0}(1,2)$ in the direction of $\mathbf{i}+\mathrm{j}$ $2 \sqrt{2}$ and in the direction of -2 is -3 . What is the derivative of f in the direction of $\mathbf{- i}-2 \mathbf{j}$? Glye reasons for your answer.
Sol. $\left.D_{\vec{a}} f\right|_{(1,2)} ^{w}=\left.2 \sqrt{2} \Rightarrow \nabla f\right|_{(1,2)} \cdot\left(\frac{i+j}{\sqrt{2}}\right)=2 \sqrt{2}$

$$
\begin{array}{ll}
& \left(f_{x} i+f_{y} j\right) \cdot(i+j)=4 \\
\left.f_{x}\right|^{\prime}+\left.f_{y}\right|_{(1,2)}=4 \ldots(1) \\
(1,2)
\end{array}
$$

$$
\begin{aligned}
\left.\nabla f\right|_{(1,2)} \frac{(-2 j)}{2} & =-3 \\
-\left.f y\right|_{(1,2)} & =-3 \Rightarrow \underbrace{f_{y}}_{(1,2)}=3 \\
& =\underline{e q(1)} f(=4-3
\end{aligned}
$$

$$
\begin{aligned}
&\left.\therefore \nabla f\right|_{(1,2)}=i+3 j \\
&\left.D f\right|_{\overline{3}}=\left.\nabla f\right|_{(1,2)} \cdot \frac{(-i-2 j)}{\sqrt{5}} \\
&=(i+3 j) \cdot\left(-\frac{i-2 j}{\sqrt{5}}\right) \\
&=-\frac{1}{\sqrt{5}}-\frac{6}{\sqrt{5}}=\frac{-7}{\sqrt{5}}
\end{aligned}
$$

14.6
38. $f(x, y)=\ln x+\ln y$ at $\quad P_{0}(1,1)$,
$R:|x-1| \leq 0.2,|y-1| \leq 0.2 \quad|E|$.
Sol. $L(x, y)=f(1,1)+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1)$

$$
\begin{aligned}
& f_{x}=\frac{1}{x}, f_{y}=\frac{1}{y} \Rightarrow f_{x}(1,1)=f_{y}(1,1)=1 \\
& f(1,1)=\ln _{n}\left|+\ln _{n}\right|=0 . \\
& L(x, y)=0+1(x-1)+1(y-1)=x+y-2 \\
& |E| \leq \frac{1}{2} m(|x-1|+|y-1|)^{2} \quad|x-1|<0.2 \\
& |y-1|<0.2 \quad-0.2<x-1<0.2 \\
& 0.8<y<1.2 \quad 0.8<x<1.2
\end{aligned}
$$

$$
\begin{array}{r}
f_{x x}=\frac{-1}{x^{2}}, f_{y y}=\frac{-1}{y^{2}}, f_{x y}=0 \\
\left|f_{x x}\right|=\frac{1}{x^{2}} \quad 0.8 \leqslant x \leqslant 1.2 \\
\leqslant \frac{1}{(0.8)^{2}} \approx 1.56 \\
\left|f_{y y}\right| \leq \frac{1}{(0.8)^{2}} \sqrt{M=} \begin{array}{l}
(0.8)^{2}
\end{array} \frac{100}{64}=\frac{50}{32}=\frac{25}{16} \\
|C| \leqslant \frac{1}{2}\left(\frac{25}{16}\right)(0.2+0.2)^{2} \approx 1.56
\end{array}
$$

38. $f(x, y)=4 x-8 x y+2 y+1$ on the triangular plate bounded by the lines $x=0, y=0, x+y=1$ in the first quadrant

Interior pts.

$$
\begin{aligned}
& f_{x}=4-8 y=0 \Rightarrow y=\frac{1}{2} \\
& f_{y}=-8 x+2=0 \Rightarrow x=\frac{1}{4} \quad\left(\frac{1}{4}, \frac{1}{2}\right)
\end{aligned}
$$

Boundaries $\overline{A B} \quad y=0,0 \leq x \leq 1$

$$
f(x, 0)=4 x+1 \Rightarrow f^{\prime}=4 \neq 0
$$

Eudpts $(0,0),(1,0)$

$$
\widehat{A C}: \quad x=0, \quad 0 \leq y \leq 1
$$

$$
f(0, y)=2 y+1 \Rightarrow f^{\prime}=2 \neq 0
$$

Endpts $(0,0),(0,1)$

$$
\begin{aligned}
& \overline{B C} \quad x+y=1 \Rightarrow y=1-x, 0 \leq x \leq 1 \\
& f(x, y)=f(x, 1-x)=4 x-8 x(1-x)+2(1-x)+1 \\
&=4 x-8 x+8 x^{2}+2-2 x+1 \\
&=8 x^{2}-6 x+3 \\
& f^{\prime}= 16 x-6=0 \Rightarrow x=\frac{3}{8} \\
& y=1-\frac{3}{8}=\frac{5}{8} \\
&\left(\frac{3}{8}, \frac{5}{8}\right)
\end{aligned}
$$

Endpoints $(0,1),(1,0)$

25. Minimizing a sum of squares Find three real numbers whose sum is 9 and the sum of whose squares is as small as possible.

Sol. $x+y+z=9 \Rightarrow g(x, y, z)=x+y+z-9$
Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$

$$
\begin{aligned}
& \nabla f=\lambda \nabla g \\
& 2 x i+2 y j+2 z k=\lambda(i+j+k) \\
& \left\{\begin{array}{r}
2 x=\lambda \\
2 y=\lambda \\
2 z=\lambda \\
x+y+z=9
\end{array} \quad \begin{array}{rl}
2 & x=\frac{\lambda}{2}
\end{array}\right. \\
& \hline=\frac{\lambda}{2} \\
& z=\frac{\lambda}{2}
\end{aligned}
$$

(1), (2), (3) into (4):

$$
\begin{aligned}
& \frac{\lambda}{2} \times \frac{\lambda}{2}+\frac{\lambda}{2}=9 \Rightarrow \frac{3 \lambda}{2}=9 \\
& x=y=z=\frac{6}{2}=3 .
\end{aligned}
$$

The min. value of f is

$$
f(3,3,3)=3^{2}+3^{2}+3^{2}=27 .
$$

